期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于红外视觉特征融合的矿井外因火灾监测方法
1
作者 李晓宇 范伟强 +1 位作者 刘毅 霍跃华 《矿业科学学报》 北大核心 2025年第1期116-124,共9页
为了解决矿井复杂环境下外因火灾监测误报率和漏报率较高的问题,提出基于红外视觉特征融合的矿井外因火灾监测算法。首先,改进红外小目标检测的局部对比度度量(LCM)模型,提高早期火灾目标的显著度,进而分割出火灾疑似区域;其次,通过分... 为了解决矿井复杂环境下外因火灾监测误报率和漏报率较高的问题,提出基于红外视觉特征融合的矿井外因火灾监测算法。首先,改进红外小目标检测的局部对比度度量(LCM)模型,提高早期火灾目标的显著度,进而分割出火灾疑似区域;其次,通过分析不同监视场景下外因火灾和主要干扰热源在热红外图像序列中的视觉特征,选出抗干扰能力强的火灾显著特征;然后,优选火灾显著特征提取方法和相似度估计策略,以获取热红外图像序列中火灾疑似区域的主要视觉特征,并构建火灾特征向量;最后,通过建立特征向量集,构建基于支持向量机(SVM)的矿井外因火灾检测模型,对所提算法进行验证。结果表明:所提算法不仅能监测不同场景下的外因火灾,还能够监测远距离和早期阶段的外因火灾,其正确率和检测率分别达到96.93%、96.24%,误检率低至2.56%;相较于对比算法,所提算法在火灾监测的准确率、误报率和漏报率方面均有较大的改善。 展开更多
关键词 矿井外因火灾 红外视觉特征 局部对比度度量(LCM)模型 特征向量 支持向量机(SVM)
在线阅读 下载PDF
基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究
2
作者 王炎林 裴晓东 +1 位作者 王凯 徐光 《工矿自动化》 北大核心 2025年第3期122-130,共9页
现有基于图像分析的矿井外因火灾监测方法受矿井环境复杂、干扰源影响较大,单模态方法易将光源误判为火源,多模态方法没有利用温度信息进行火源判定,且在粉尘条件下这两种方法的识别精度较低。针对上述问题,提出一种基于双光谱成像技术... 现有基于图像分析的矿井外因火灾监测方法受矿井环境复杂、干扰源影响较大,单模态方法易将光源误判为火源,多模态方法没有利用温度信息进行火源判定,且在粉尘条件下这两种方法的识别精度较低。针对上述问题,提出一种基于双光谱成像技术的矿井早期火源识别及抗干扰方法。首先采用YOLOv10模型对可见光图像进行实时火源检测,利用红外热成像获取温度分布数据,然后通过Canny边缘检测与图像二值化预处理,消除可见光与红外图像的成像差异,最后采用pHash算法计算可见光与红外图像边缘哈希值的海明距离,并标定阈值(海明距离≤25),判定是否为同一火源,从而有效区分火源与干扰源。实验结果表明:在无粉尘无干扰源工况下,基于双光谱成像技术的矿井早期火源识别及抗干扰方法的准确率达98%,召回率为94%,优于单模态的YOLOv10(准确率为97%,召回率为86%);在粉尘干扰条件下,粉尘覆盖摄像头表面33%时,该方法的准确率和召回率分别为85%,80%,粉尘覆盖摄像头表面66%时,准确率和召回率分别为70%,65%,优于单模态和多模态方法。 展开更多
关键词 矿井外因火灾 早期火源识别 双光谱成像技术 可见光 红外光 pHash算法 YOLOv10 海明距离
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部