期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
中尺度模式风电场风速短期预报能力研究 被引量:17
1
作者 张宇 郭振海 +1 位作者 林一骅 迟德中 《大气科学》 CSCD 北大核心 2013年第4期955-962,共8页
本文利用内蒙古乌兰察布风电场2009年观测记录和WRF数值模式预报,研究了中尺度数值天气模式对风电场风速的短期预报能力。研究表明:不同数值模式参数化方案的预报能力没有实质性的区别,对于不同时效的风场预报各种方案的预报能力不尽相... 本文利用内蒙古乌兰察布风电场2009年观测记录和WRF数值模式预报,研究了中尺度数值天气模式对风电场风速的短期预报能力。研究表明:不同数值模式参数化方案的预报能力没有实质性的区别,对于不同时效的风场预报各种方案的预报能力不尽相同。在天气演变较为剧烈时,模式预报技巧相对较差。风电场周边主要天气系统对预报准确度有很大影响。就乌兰察布风电场而言,WRF模式2009年日平均预报相对误差仅为11.78%,且误差大于20%的日数占研究总天数不超过15%,具有较高的预报技巧。当蒙古气旋、东北气旋剧烈发展或风速迅速减小时风速的预报误差较大。 展开更多
关键词 风力发电 短期风速预报 中尺度模式 天气分析
在线阅读 下载PDF
新投产风电场的短期风速预测模型建立 被引量:5
2
作者 陈欣 孙翰墨 +2 位作者 申烛 孟凯锋 岳捷 《电测与仪表》 北大核心 2014年第9期57-60,共4页
常规的风电场功率预测建模主要方法是将数值天气预报产生的气象要素输入基于历史scada数据建立统计模型,得到全场预报总功率。但是新投产的风电场没有历史scada数据,而风电场功率预测的准确性主要依赖于短期风速预报的精度。因此,为提... 常规的风电场功率预测建模主要方法是将数值天气预报产生的气象要素输入基于历史scada数据建立统计模型,得到全场预报总功率。但是新投产的风电场没有历史scada数据,而风电场功率预测的准确性主要依赖于短期风速预报的精度。因此,为提高新投产风电场功率预测的准确性,短期风速预报的建立是基于数值气象预报的物理模型和统计模型相结合的方式。首先,通过数值气象模式输出风电场测风塔处轮毂高度层的气象要素;其次,通过建立神经网络模型和多元线性回归两种统计方法对模式输出数据进行修正;最后,对误差的来源进行分类分析。在江苏某风场的测试结果表明,较传统的方式,预测精度有了明显的提高,该方法能够消除数值气象预报的振幅偏差,但相位偏差仍是误差的主要来源。 展开更多
关键词 新投产风电场 短期风速预报 物理模型 统计模型 误差
在线阅读 下载PDF
Short-term forecasting optimization algorithms for wind speed along Qinghai-Tibet railway based on different intelligent modeling theories 被引量:8
3
作者 刘辉 田红旗 李燕飞 《Journal of Central South University》 SCIE EI CAS 2009年第4期690-696,共7页
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s... To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation. 展开更多
关键词 train safety wind speed forecasting wavelet analysis time series analysis Kalman filter optimization algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部