期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:9
1
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
用于短期风功率预测的历史数据深度迁移模型 被引量:6
2
作者 彭飞 贲驰 +3 位作者 马煜 吴奕 安丰强 陈志奎 《重庆大学学报》 CSCD 北大核心 2022年第1期95-102,共8页
随着全球化石燃料短缺日益严重,可再生能源的开发与利用愈发得到重视。风能是被广泛使用的清洁能源之一,在生产工作中,风力发电作为风能的主要利用形式,需要对其功率进行预测。依托风场日常记录的历史数据,传统学习模型可对风功率进行... 随着全球化石燃料短缺日益严重,可再生能源的开发与利用愈发得到重视。风能是被广泛使用的清洁能源之一,在生产工作中,风力发电作为风能的主要利用形式,需要对其功率进行预测。依托风场日常记录的历史数据,传统学习模型可对风功率进行短期预测,但往往仅使用自己域内的历史数据作为分析对象,该类算法导致结果片面,局限性大,不能有效使用类数据中的隐含联系,抑制原始数据缺失或异常值引起的模型性能下降问题。笔者设计一种基于历史数据深度迁移的短期风功率预测模型。首先,使用带降噪处理的自动编码机构建深度神经网络模型。其次,应用深度迁移方法共享隐藏层,挖掘特征之间的隐含联系。最后,从具有相似特征和地理位置的风场数据中迁移重要知识,提高模型准确率和可靠性。实验结果表明,研究方法较之未使用迁移的方法更充分利用现有数据,预测准确率显著提高。 展开更多
关键词 短期风功率预测 历史数据 深度迁移学习
在线阅读 下载PDF
基于Elman和实测风速功率数据的短期风功率预测 被引量:12
3
作者 王一珺 贾嵘 《高压电器》 CAS CSCD 北大核心 2017年第9期125-129,共5页
为提高风电场发电功率预测的精度,提出一种基于Elman神经网络和实测风速功率数据的短期风功率预测方法。根据风速和风电功率历史数据来拟合风电机的风速功率曲线;建立基于Elman神经网络的短期风功率预测模型,并利用遗传算法对网络参数... 为提高风电场发电功率预测的精度,提出一种基于Elman神经网络和实测风速功率数据的短期风功率预测方法。根据风速和风电功率历史数据来拟合风电机的风速功率曲线;建立基于Elman神经网络的短期风功率预测模型,并利用遗传算法对网络参数进行优化。最后,将文中预测模型应用到实测数据验证模型的有效性,结果表明了模型的先进性。 展开更多
关键词 ELMAN神经网络 短期风功率预测 功率曲线 遗传算法
在线阅读 下载PDF
基于混合算法优化的短期风功率预测 被引量:6
4
作者 董朕 殷豪 孟安波 《智慧电力》 2017年第11期24-30,共7页
准确预测风电功率对风电规模化并网以及电网安全运行至关重要。针对短期风电功率预测,提出一种具有自适应噪声特性的完备集成经验模态分解和纵横交叉核极限学习机的混合预测模型。首先采用具有自适应噪声特性的完备集成经验模式将原始... 准确预测风电功率对风电规模化并网以及电网安全运行至关重要。针对短期风电功率预测,提出一种具有自适应噪声特性的完备集成经验模态分解和纵横交叉核极限学习机的混合预测模型。首先采用具有自适应噪声特性的完备集成经验模式将原始风电信号分解成多个固有模态分量;然后利用核极限学习机对各个模态分量进行预测,并采用纵横交叉算法对核极限学习机的惩罚参数和核参数进行优化,从而得到更好的预测结果,最后叠加全部分量的预测值作为最终的预测结果。以2个不同风电场实际采集的数据为算例,并引入不同方法进行对比,证实了该模型的优越性和鲁棒性。 展开更多
关键词 短期风功率预测 完备集成经验模态分解 纵横交叉算法 核极限学习机
在线阅读 下载PDF
改进黑猩猩算法和LSSVR-BiLSTM双尺度模型的短期风功率预测 被引量:3
5
作者 王红君 谢煜轩 +1 位作者 赵辉 岳有军 《重庆理工大学学报(自然科学)》 北大核心 2023年第9期243-252,共10页
为提高风功率预测精度,提出一种基于改进自适应白噪声完全集合经验模态分解(ICEEMDAN)、排列熵(PE)、改进黑猩猩优化算法(ICHOA)、最小二乘支持向量回归机(LSSVR)和双向长短时记忆(BiLSTM)网络相结合的短期风功率预测混合模型。通过ICEE... 为提高风功率预测精度,提出一种基于改进自适应白噪声完全集合经验模态分解(ICEEMDAN)、排列熵(PE)、改进黑猩猩优化算法(ICHOA)、最小二乘支持向量回归机(LSSVR)和双向长短时记忆(BiLSTM)网络相结合的短期风功率预测混合模型。通过ICEEMDAN将非平稳的原始风电序列分解为相对平稳的模态分量,并使用PE聚合来降低计算复杂度。分别将BiLSTM模型和LSSVR模型应用于高频分量和低频分量的预测。采用ICHOA用于优化模型的参数。将每个预测分量值叠加得出最终预测结果。算例分析结果表明,所提LSSVR-BiLSTM双尺度深度学习模型与其他模型相比,能更好地拟合风功率数据,具有较高的预测精度和可行性。 展开更多
关键词 短期风功率预测 ICEEMDAN算法 黑猩猩优化算法 最小二乘支持向量回归机 双向长短时记忆网络
在线阅读 下载PDF
基于二次分解NGO-VMD残差项与长短时记忆神经网络的超短期风功率预测 被引量:15
6
作者 宋江涛 崔双喜 刘洪广 《科学技术与工程》 北大核心 2023年第6期2428-2437,共10页
鉴于目前使用变分模态分解(variational modal decomposition, VMD)搭建的单次或二次分解风功率组合预测模型中,大多均直接忽略了风功率经VMD分解后残差项所包含的丰富信息,使得超短期风功率预测精度受限。提出了一种基于二次分解NGO-VM... 鉴于目前使用变分模态分解(variational modal decomposition, VMD)搭建的单次或二次分解风功率组合预测模型中,大多均直接忽略了风功率经VMD分解后残差项所包含的丰富信息,使得超短期风功率预测精度受限。提出了一种基于二次分解NGO-VMD残差项、K均值聚类算法与长短时记忆神经网络(long short-term memory, LSTM)的组合预测模型。首先,使用北方苍鹰优化算法(northern goshawk optimization, NGO)对VMD的参数进行寻优,以选出最佳VMD参数组合;其次,采用NGO-VMD模型对VMD残差项进行二次分解,深度挖掘VMD残差项所包含的丰富信息;再次,利用K均值聚类算法解决VMD分解模态分量个数多,计算量繁冗的问题;最后,创建LSTM模型对各子模态分量分别进行预测并叠加各子模态分量的预测值得到超短期风功率预测结果。结果表明:该二次分解NGO-VMD残差项、K均值聚类算法和LSTM组合预测模型可充分挖掘VMD残差项的重要信息,有效提高了超短期风功率预测的精度。 展开更多
关键词 二次分解 短期风功率预测 北方苍鹰优化算法 K均值聚类算法 组合预测
在线阅读 下载PDF
基于IEWT-FE-BO-LSTM模型的超短期风功率预测 被引量:10
7
作者 陆秋贤 马刚 涂孟夫 《水电能源科学》 北大核心 2023年第1期217-220,共4页
为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立... 为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立基于长短时神经网络(LSTM)的预测模型,利用贝叶斯优化算法(BO)进行超参数组合,解决人为调参导致训练结果不佳的问题;最后通过历史风电场数据进行算例分析。结果表明,IEWT-FE-BO-LSTM模型对超短期风功率有较高的预测精度和预测效率。 展开更多
关键词 短期风功率预测 改进经验小波分解 模糊熵 贝叶斯优化算法
在线阅读 下载PDF
含超短期风功率预测增强处理的风储系统超前滚动优化控制策略 被引量:18
8
作者 李滨 邓有雄 陈碧云 《电网技术》 EI CSCD 北大核心 2021年第6期2280-2287,共8页
因风电固有的高不确定性与强随机性的特点,在电力市场中难以与传统机组相竞争,影响其大规模地接入电网。为提高风电跟踪计划出力能力与市场竞争力,首先结合电池储能系统,考虑风储系统运行约束,建立了以区域发电机组并网要求下惩罚电量... 因风电固有的高不确定性与强随机性的特点,在电力市场中难以与传统机组相竞争,影响其大规模地接入电网。为提高风电跟踪计划出力能力与市场竞争力,首先结合电池储能系统,考虑风储系统运行约束,建立了以区域发电机组并网要求下惩罚电量与电池吞吐量最小为目标的优化模型;其次利用卡尔曼滤波算法对超短期风电功率预测数据进行增强处理,提高预测功率的时间分辨率与预测精度;在此基础上,将预测增强处理与超前滚动优化结合,提出了一种含超短期风功率预测增强处理的风储系统超前滚动优化控制策略。仿真结果表明,所提优化控制策略可在满足传统机组并网要求下,提高风储系统市场竞争力与经济性。 展开更多
关键词 储联合系统 短期功率预测 预测增强处理 滚动优化 控制策略
在线阅读 下载PDF
基于mRMR和VMD-AM-LSTM的短期风功率预测 被引量:9
9
作者 杨宇晴 张怡 《控制工程》 CSCD 北大核心 2022年第1期10-17,共8页
为了提高模型预测风功率的准确率,提出了一种基于最大相关-最小冗余筛选、变分模态分解、注意力机制和长短期记忆神经网络的短期风功率预测方法。首先使用变分模态分解算法将风功率序列分解成几个中心频率不同的分量;再对各个分量结合... 为了提高模型预测风功率的准确率,提出了一种基于最大相关-最小冗余筛选、变分模态分解、注意力机制和长短期记忆神经网络的短期风功率预测方法。首先使用变分模态分解算法将风功率序列分解成几个中心频率不同的分量;再对各个分量结合最大相关-最小冗余筛选出的气象特征分别建立注意力机制和长短期记忆混合预测模型;最后将各个分量的预测结果叠加,得到最终的风功率。实际算例表明,与其他几种模型对比,所提预测方法准确率明显提升。 展开更多
关键词 短期风功率预测 变分模态分解 注意力机制 短期记忆神经网络
在线阅读 下载PDF
基于偏最大信息系数与组合XGBoost的短期风功率预测 被引量:6
10
作者 李科 黄东晨 +3 位作者 陶子彬 熊欢 李浩文 杜业冬 《电力工程技术》 北大核心 2021年第6期95-102,共8页
作为新能源领域的课题热点之一,短期风功率预测的研究在提高预测精度的同时也应重视模型的工程化应用。据此,提出一种基于偏最大信息系数的组合XGBoost预测模型。首先,设计一种基于偏最大信息系数的特征选择算法,通过引入偏互信息,在挖... 作为新能源领域的课题热点之一,短期风功率预测的研究在提高预测精度的同时也应重视模型的工程化应用。据此,提出一种基于偏最大信息系数的组合XGBoost预测模型。首先,设计一种基于偏最大信息系数的特征选择算法,通过引入偏互信息,在挖掘出对风功率影响较大的气象特征的同时,也能消除耦合信息带来的不利影响。在此基础上,为兼顾模型的精度和计算效率,降低单个模型的预测风险,构建以XGBoost为底层算法的组合预测模型,进一步实现风功率预测。采用2个具有较大差异的风电场作为算例进行验证分析,结果表明,基于偏最大信息系数特征选择算法的组合XGBoost预测模型不但能提升短期风功率的预测精度,与相近的组合预测模型相比,也具备更高的计算效率,有利于工程化应用。 展开更多
关键词 特征选择 组合XGBoost 偏最大信息系数 短期风功率预测 计算效率 工程化应用
在线阅读 下载PDF
基于经验模态分解与多分支神经网络的超短期风功率预测 被引量:9
11
作者 孟鑫禹 王睿涵 +3 位作者 张喜平 王明杰 丘刚 王政霞 《计算机应用》 CSCD 北大核心 2021年第1期237-242,共6页
风功率预测是实现风电场监控及信息化管理的重要基础,风功率超短期预测常用于平衡负荷、优化调度,对预测精度有较高的要求。由于风电场环境复杂、风速不确定性因素较多,风功率时序信号往往具有非平稳性和随机性。循环神经网络(RNN)适用... 风功率预测是实现风电场监控及信息化管理的重要基础,风功率超短期预测常用于平衡负荷、优化调度,对预测精度有较高的要求。由于风电场环境复杂、风速不确定性因素较多,风功率时序信号往往具有非平稳性和随机性。循环神经网络(RNN)适用于时间序列任务,但无周期、非平稳的时序信号会增加网络学习的难度。为了克服非平稳信号在预测任务中的干扰,提高风功率预测精度,提出了一种结合经验模态分解与多分支神经网络的超短期风功率预测方法。首先将原始风功率时序信号通过经验模态分解(EMD)以重构数据张量,然后用卷积层和门控循环单元(GRU)层分别提取局部特征和趋势特征,最后通过特征融合与全连接层得到预测结果。在内蒙古某风场实测数据集上的实验结果表明,与差分整合移动平均自回归(ARIMA)模型相比,所提方法在预测精度方面有将近30%的提升,验证了所提方法的有效性。 展开更多
关键词 功率短期预测 经验模态分解 神经网络 卷积 门控循环单元 特征融合
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测
12
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
基于超参数优化和误差修正的STAGN超短期风电功率预测 被引量:1
13
作者 潘超 王超 +1 位作者 孙惠 孟涛 《电力系统保护与控制》 北大核心 2025年第8期117-129,共13页
针对风电功率预测模型的数据关联性与误差修正适应性问题,提出基于超参数优化和误差修正单元切换的超短期风电功率预测方法。首先,构建时空注意力门控网络预测模型,利用改进开普勒算法进行超参数优化。然后,考虑风电场数据与预测误差之... 针对风电功率预测模型的数据关联性与误差修正适应性问题,提出基于超参数优化和误差修正单元切换的超短期风电功率预测方法。首先,构建时空注意力门控网络预测模型,利用改进开普勒算法进行超参数优化。然后,考虑风电场数据与预测误差之间的非线性关联,构建误差修正自适应单元。同时挖掘风速时序变化特征,构建深度学习单元。在此基础上,提出基于风速矩阵梯度的误差修正单元切换策略。最后,将模型应用于实际风场的功率预测并与其他模型对比分析。结果表明,所提方法在预测精度上优于其他方法,且在风速复杂多变的风场仍具有较高预测精度,验证了所提方法的准确性和适用性。 展开更多
关键词 短期功率预测 改进开普勒算法 误差修正 速矩阵梯度
在线阅读 下载PDF
基于改进STGCN与N-BEATS的风功率超短期预测
14
作者 程旭初 刘景霞 康荣凯 《现代电子技术》 北大核心 2025年第8期115-121,共7页
精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提... 精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提取数据时空特征来提高预测精度。首先,利用STGCN对多元输入序列进行深度特征提取,充分挖掘风机SCADA数据中的时空潜在关系;同时,为了进一步提高预测精度,通过构建序列分解模块与多分辨率卷积对STGCN模型进行改进,使其能够更好地适应风电数据的复杂特性;然后,神经基扩展分析(N-BEATS)新型神经网络对STGCN提取的时空信息数据进行时序关系分析,得到最终预测结果;最后,以内蒙古某风场SCADA数据为例,通过多模型对比实验与自身消融实验验证了所提组合模型策略的有效性以及对STGCN的改进效果。实验结果表明,所设计模型在预测精度上取得了显著的提升,为风电功率预测领域的研究提供了新的思路和方法。 展开更多
关键词 短期风功率预测 时空图卷积 神经基扩展分析 序列分解 深度特征提取 图卷积网络
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
15
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
考虑误差概率分布及波动特性的短期风电功率预测修正方法 被引量:1
16
作者 宫婷 车建峰 +2 位作者 王勃 柴荣繁 杨耘博 《高电压技术》 北大核心 2025年第1期379-389,共11页
随着国家“双碳”目标的持续推进,风力发电装机占比持续增高,强随机波动的大规模风电出力给电力系统的“保消纳、保供电”带来严峻挑战,高精度的风电功率预测是解决上述挑战的重要基础手段,风电场和电网调度中心均将持续提升风电功率预... 随着国家“双碳”目标的持续推进,风力发电装机占比持续增高,强随机波动的大规模风电出力给电力系统的“保消纳、保供电”带来严峻挑战,高精度的风电功率预测是解决上述挑战的重要基础手段,风电场和电网调度中心均将持续提升风电功率预测精度视为长期重点工作。为此,提出一种基于短期风电功率预测误差分布特性统计与波动特性分析的风电功率预测修正方法。首先,考虑误差时序-条件特点对误差进行基于改进非参数核密度估计法(kernel density estimation,KDE)的误差概率密度分布特性分析,得出不同置信水平下的风电功率预测置信区间,以实现预测误差的分层划分。其次,采用变分模态分解算法(variational mode decomposition,VMD)将风电功率预测误差序列分解为趋势分量和随机分量,针对2类误差分量特点展开分类预测,并对最终所得误差结果进行波动性分析。最后,结合误差分层划分结果与误差波动特性分析进行综合判断,提出针对各类情况的误差补偿方案,从而获得修正后的短期风电功率预测值。实际算例表明,所提误差补偿方法可将风电功率月均方根误差较补偿前减少2.6个百分点,平均绝对误差较补偿前减少2.4个百分点,该方法能够有效减小风电功率预测误差,提升短期风电功率预测精度。 展开更多
关键词 短期功率预测 误差概率分布 误差分层分析 误差波动性分析 误差分解-重构预测 误差修正
在线阅读 下载PDF
基于EMVMD-GPSAO的短期风电功率网络预测模型
17
作者 陈万志 杜超 王天元 《电工电能新技术》 北大核心 2025年第7期90-98,共9页
针对风电时间序列数据的非线性、非平稳特征而导致的短期风电功率预测精度低问题,本文提出一种基于多频解构特征优选方法与改进的雪消融优化器(EMVMD-GPSAO)的短期风电功率网络预测模型。首先,采用多频解构特征优选方法(EMVMD)从原始风... 针对风电时间序列数据的非线性、非平稳特征而导致的短期风电功率预测精度低问题,本文提出一种基于多频解构特征优选方法与改进的雪消融优化器(EMVMD-GPSAO)的短期风电功率网络预测模型。首先,采用多频解构特征优选方法(EMVMD)从原始风电功率及气象数据中分解、筛选得到关键模态特征,提升训练数据质量;其次,构建融合双向时间卷积网络(BiTCN)和双向门控循环单元(BiGRU)的网络模型,采用改进的雪消融优化器(GPSAO)优化模型超参数,并通过多头注意力机制(MHA)实现时序特征的自适应加权;最后,对模型输出的预测序列进行反归一化处理,获得预测结果。场景数据集实验结果表明,所提模型的MAE降低超过58.02%,MAPE降低超过4.52%,RMSE降低超过46.59%,跨数据集R2维持在0.99以上。四种评价指标均优于对比模型,具有更高的预测精度与泛化能力。 展开更多
关键词 短期功率预测 多元变分模态分解 雪消融优化器 双向时间卷积网络 双向门控循环单元
在线阅读 下载PDF
考虑多对一时空特征的短期风功率组合预测模型 被引量:1
18
作者 魏乐 戴泽 +2 位作者 陈远野 房方 胡阳 《动力工程学报》 CAS CSCD 北大核心 2024年第12期1869-1877,共9页
为研究单台风机数据进行风功率预测时未考虑空间特征造成预测精度不理想的问题,提出了一种考虑多对一时空特征的基于改进序列到序列(Seq2Seq)模型的短期风功率预测组合模型。首先,采用k近邻算法对风电场的风机实现空间区域的划分,获取k... 为研究单台风机数据进行风功率预测时未考虑空间特征造成预测精度不理想的问题,提出了一种考虑多对一时空特征的基于改进序列到序列(Seq2Seq)模型的短期风功率预测组合模型。首先,采用k近邻算法对风电场的风机实现空间区域的划分,获取k台近邻风机的数据,基于孤立森林算法对异常数据进行识别、筛选和填充。其次,应用双向门控循环单元和自注意力机制对Seq2Seq模型进行改进,利用具有空间特征的邻接矩阵对模型进行权重优化。最后,进行多对一短期风功率预测,输出目标风机风功率预测结果。采用美国风场实际运行数据,将所提出的组合模型与长短期记忆(LSTM)等5种模型进行对比,以验证模型的可靠性。结果表明:该组合模型在时空风功率预测中表现出令人满意的稳定性和鲁棒性,可有效提高风功率预测精度及效率。 展开更多
关键词 时空特征 短期风功率预测 多对一 自注意力机制 Seq2Seq
在线阅读 下载PDF
基于误差补偿及IDBO-BiLSTM的风电功率短期预测
19
作者 魏振宇 姜雪松 杨立发 《科学技术与工程》 北大核心 2025年第6期2397-2405,共9页
针对风电出力稳定性差、随机性强而导致的模型精度差的问题。提出了一种基于二次分解误差补偿的风电功率短期预测模型。首先建立双向长短期记忆(bidirectional long short-term memory,BiLSTM)预测模型对风电功率进行预测并输出预测误... 针对风电出力稳定性差、随机性强而导致的模型精度差的问题。提出了一种基于二次分解误差补偿的风电功率短期预测模型。首先建立双向长短期记忆(bidirectional long short-term memory,BiLSTM)预测模型对风电功率进行预测并输出预测误差。其次,采用了一种利用混沌映射初始化种群、引入黄金正弦策略更新滚球蜣螂位置,并添加动态自适应性权重系数来更新偷窃蜣螂的位置的改进蜣螂优化算法(improved dung beetle optimizer,IDBO)对预测模型参数寻优,防止网络陷入局部最优解,自适应搜寻最优参数组合。然后,采用分解-重构-分解的策略,利用自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)进行首次分解,并且引入样本熵(sample entropy,SE)与K均值(K-means)将序列按频率进行重构并通过变分模态分解(variational mode decomposition,VMD)将高频误差序列分解成不同频段的误差序列,提高后续模型的预测效率及预测精度。最后,将各分量输入误差补偿模型进行预测并引入Attention机制学习不同时间步的特征关系,并给与不同权重值,加强对关键信息的注意力。通过新疆达坂城风电场实测数据验证了所提模型预测精度高,具有显著优势。 展开更多
关键词 功率短期预测 双向长短期记忆网络 改进蜣螂优化算法 完全集合经验模态分解 变分模态分解
在线阅读 下载PDF
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:9
20
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期功率预测 互补集合经验模态分解 样本熵 短期记忆网络 门控循环单元
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部