期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Attention机制的CNN⁃GRU配网线路重过载短期预测方法
被引量:
13
1
作者
杨秀
胡钟毓
+2 位作者
田英杰
谢海宁
陈文涛
《电力科学与技术学报》
CAS
CSCD
北大核心
2023年第1期201-209,共9页
随着用户用电需求增加,迎峰度夏期间配网线路重过载较严重,为电网运行增加安全隐患。实现配网线路重过载短期预测,对合理安排负荷高峰时期运行方式和调度管理以及线路的安全运行具有重要意义。文中提出一种基于注意力(Attention)机制的...
随着用户用电需求增加,迎峰度夏期间配网线路重过载较严重,为电网运行增加安全隐患。实现配网线路重过载短期预测,对合理安排负荷高峰时期运行方式和调度管理以及线路的安全运行具有重要意义。文中提出一种基于注意力(Attention)机制的卷积神经网络(CNN)—门限循环单元神经网络(GRU)组合预测模型。结合高相关性时间段的历史线路负载率数据和气象因素作为输入特征,利用CNN处理多源数据并提取有效特征作为GRU的输入,再通过GRU对时序特征集进行分析预测,利用Attention机制对重要数据分配更多的注意力权重,实现配网线路负载率的回归预测,最后根据负载等级划分标准将负载率预测结果转化为负载等级。使用所提方法对上海市某区某10 kV线路数据进行实验。实验结果表明,该预测方法比相同模型结构但以负载等级为输入的重过载分类预测,更适用于配网线路重过载预测。
展开更多
关键词
卷积神经网络
注意力机制
门限循环单元神经网络
配网线路
短期重过载预测
在线阅读
下载PDF
职称材料
题名
基于Attention机制的CNN⁃GRU配网线路重过载短期预测方法
被引量:
13
1
作者
杨秀
胡钟毓
田英杰
谢海宁
陈文涛
机构
上海电力大学电气工程学院
国网上海市电力公司电力科学研究院
国网新疆电力有限公司电力科学研究院
出处
《电力科学与技术学报》
CAS
CSCD
北大核心
2023年第1期201-209,共9页
基金
国家自然科学基金(51907114)
上海电力人工智能工程技术研究中心研究项目(19DZ2252800)。
文摘
随着用户用电需求增加,迎峰度夏期间配网线路重过载较严重,为电网运行增加安全隐患。实现配网线路重过载短期预测,对合理安排负荷高峰时期运行方式和调度管理以及线路的安全运行具有重要意义。文中提出一种基于注意力(Attention)机制的卷积神经网络(CNN)—门限循环单元神经网络(GRU)组合预测模型。结合高相关性时间段的历史线路负载率数据和气象因素作为输入特征,利用CNN处理多源数据并提取有效特征作为GRU的输入,再通过GRU对时序特征集进行分析预测,利用Attention机制对重要数据分配更多的注意力权重,实现配网线路负载率的回归预测,最后根据负载等级划分标准将负载率预测结果转化为负载等级。使用所提方法对上海市某区某10 kV线路数据进行实验。实验结果表明,该预测方法比相同模型结构但以负载等级为输入的重过载分类预测,更适用于配网线路重过载预测。
关键词
卷积神经网络
注意力机制
门限循环单元神经网络
配网线路
短期重过载预测
Keywords
CNN
Attention mechanism
GRU
distribution net line
short‑term heavy overload prediction
分类号
TM726 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Attention机制的CNN⁃GRU配网线路重过载短期预测方法
杨秀
胡钟毓
田英杰
谢海宁
陈文涛
《电力科学与技术学报》
CAS
CSCD
北大核心
2023
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部