期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于序列重构的VMD-SSA-LSSVM组合模型短期碳排放预测
1
作者 徐正林 程志友 +1 位作者 张帅 杨猛 《安徽大学学报(自然科学版)》 北大核心 2025年第4期28-37,共10页
针对碳排放数据的随机性及波动性因素所导致预测精度不高等问题,提出基于序列重构的VMD-SSA-LSSVM(variational mode decomposition-sparrow search algorithm-least square support vector machine)组合模型进行短期碳排放预测.首先将... 针对碳排放数据的随机性及波动性因素所导致预测精度不高等问题,提出基于序列重构的VMD-SSA-LSSVM(variational mode decomposition-sparrow search algorithm-least square support vector machine)组合模型进行短期碳排放预测.首先将区域的碳排放数据序列经过VMD进行分解得到4个不同中心频率的子序列和一个残差序列,降低数据不规律性对碳排放预测带来的干扰;接着对分解后的各个分量进行序列重构,提高对突变点的预测精度;然后根据不同分量各自的特点,使用SSA优化核函数中相关的参数,对重构后得到的各个序列建立SSA-LSSVM预测模型;最后将所有序列的预测值融合得到预测结果.算例结果表明基于序列重构的组合模型能够有效提高短期碳排放预测的精度. 展开更多
关键词 短期碳排放预测 序列重构 变分模态处理 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部