期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
基于门架数据的高速公路货车流量短时预测
1
作者 田钊 程钰婕 +3 位作者 李姝婕 张乾钟 邵凯凯 杨艳芳 《郑州大学学报(理学版)》 北大核心 2025年第6期58-64,共7页
高速公路货运在货运体系中持续占据重要地位,相较于其他交通数据,门架数据准确性更高,但由于其难以获取,现有的预测模型较少使用门架数据来预测高速公路货车流量。针对以上问题,提出基于门架数据的高速公路货车流量短时预测模型。首先,... 高速公路货运在货运体系中持续占据重要地位,相较于其他交通数据,门架数据准确性更高,但由于其难以获取,现有的预测模型较少使用门架数据来预测高速公路货车流量。针对以上问题,提出基于门架数据的高速公路货车流量短时预测模型。首先,对高速公路货车数据进行预处理。其次,将注意力机制与自适应图卷积网络(AGCN)相融合,挖掘高速公路货车数据中的空间相关性,并通过残差神经网络(ResNet)与长短期记忆(LSTM)网络来挖掘高速公路货车数据中的时间相关性。最后,通过特征融合得到最终高速公路货车流量预测结果。通过对比实验,所提模型与LSTM、STNN等基线模型相比,在短期的高速公路货车流量预测上有更高的准确度。 展开更多
关键词 短时流量预测 门架数据 深度学习 残差神经网络 长短期记忆网络
在线阅读 下载PDF
改进鲸鱼优化GRU的窄路短时车流量预测 被引量:1
2
作者 贾硕 林士飏 +1 位作者 杨苗会 孙滕 《计算机工程》 北大核心 2025年第2期111-125,共15页
窄路段作为交通场景中不可避免的瓶颈路段,其短时车流量预测对优化路径规划、改善交通状况具有重要意义。针对窄路段的时效性,同时考虑适用模型的准确度,提出一种基于佳点集初始化种群、非线性参数控制及柯西变异扰动的改进鲸鱼优化算法... 窄路段作为交通场景中不可避免的瓶颈路段,其短时车流量预测对优化路径规划、改善交通状况具有重要意义。针对窄路段的时效性,同时考虑适用模型的准确度,提出一种基于佳点集初始化种群、非线性参数控制及柯西变异扰动的改进鲸鱼优化算法(IWOA)-门控循环单元(GRU)的窄路短时车流量预测模型,以SUMO(Simulation of Urban Mobility)仿真数据进行了实证研究。对比实验结果显示,IWOA具有较好的全局性、收敛速度且更加稳定。基于IWOA-GRU的窄路短时车流量预测模型,均方根误差(RMSE)指标相较于WOA-GRU、PSO-GRU、长短期记忆神经(LSTM)网络分别降低10.96%、28.71%、42.23%,平均绝对百分比误差(MAPE)指标分别降低13.92%、46.18%、52.83%,有较为显著的准确性和稳定性。 展开更多
关键词 短时流量预测 窄路段 鲸鱼优化算法 门控循环单元 SUMO软件
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
3
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition EMD) 数据差分处理(data differential processing) 长短期记忆(long short-term memory LSTM)
在线阅读 下载PDF
基于CNN-LSTM-AM的短时交通流量预测 被引量:1
4
作者 汤泽慧 赵丹 王晟由 《科学技术与工程》 北大核心 2024年第31期13562-13567,共6页
短时交通流量预测对于提高实时交通数据信息的精准性及增加车辆道路行驶的效益性具有重要意义。为能准确预测未来短期交通流量情况,支持智能交通系统的应用和决策,提出一种基于CNN-LSTM-AM的短时交通流量预测模型。首先利用卷积神经网络... 短时交通流量预测对于提高实时交通数据信息的精准性及增加车辆道路行驶的效益性具有重要意义。为能准确预测未来短期交通流量情况,支持智能交通系统的应用和决策,提出一种基于CNN-LSTM-AM的短时交通流量预测模型。首先利用卷积神经网络(convolutional neural network,CNN)来对交通流序列进行信息捕捉,从而提取交通流数据的动态变化特征;其次将所提取的特征向量构成时间序列作为长短期记忆(long short-term memory,LSTM)网络的输入;最后根据注意力机制(attention mechanism,AM)来分配LSTM隐含层不同权重,增强重要特征的作用,完成交通流量预测。采用美国加利福尼亚州高速路网数据库PeMS里面的相关数据信息,通过实验与其他神经网络预测模型进行对比,结果显示,CNN-LSTM-AM模型的相对平均误差(mean absolute percentage error,MAPE)值为0.254578%,R^(2)=0.583152,预测能力优于其他对比模型。其所用方法可以对未来短时交通流量预测提供一种思路模型。 展开更多
关键词 短时交通流量预测 CNN LSTM网络 注意力机制
在线阅读 下载PDF
交叉口短时流量CEEMDAN-PE-OSELM预测模型 被引量:18
5
作者 田秀娟 于德新 +2 位作者 邢雪 商强 王树兴 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第3期83-89,共7页
为提高交叉口短时交通流预测精度,以历史交通流量数据为基础,提出一种基于自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)-排列熵(permutation entropy,PE)-在线序贯极... 为提高交叉口短时交通流预测精度,以历史交通流量数据为基础,提出一种基于自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)-排列熵(permutation entropy,PE)-在线序贯极限学习机(online sequential extreme learning machine,OSELM)组合预测模型(CEEMDAN-PE-OSELM).首先对交通流历史时间序列数据进行CEEMDAN分解,得到多个本征模态函数(intrinsic mode function,IMF)分量;通过PE算法对IMF分量进行重组,形成具有复杂度差异的重组子序列.然后,分别构建重组子序列OSELM预测模型,将预测结果相加得到最终预测流量.最后选取一实际交叉口,进行模型验证分析.结果表明:CEEMDAN-PE-OSELM模型的MAE、MAPE和MSE的值均低于其他模型,预测误差最小;EC值为0.963,高于ARIMA模型的EC值(0.898),最接近于1,预测精度最高,稳定性最好.就同一预测模型而言,经过CEEMDAN-PE处理的模型的各项误差明显降低,预测精度有所提高. 展开更多
关键词 时间序列 短时流量预测 组合预测 经验模态分解 极限学习机
在线阅读 下载PDF
基于贝叶斯估计的短时空域扇区交通流量预测 被引量:12
6
作者 陈丹 胡明华 +1 位作者 张洪海 尹嘉男 《西南交通大学学报》 EI CSCD 北大核心 2016年第4期807-814,共8页
为准确把握空域扇区流量分布态势及未来变化趋势,提出了一种基于贝叶斯估计的短时空域扇区交通流量预测方法.首先,通过解析空域系统内航空器原始雷达数据,提取各扇区历史运行信息,建立了多扇区聚合交通流模型;其次,采用贝叶斯估计理论... 为准确把握空域扇区流量分布态势及未来变化趋势,提出了一种基于贝叶斯估计的短时空域扇区交通流量预测方法.首先,通过解析空域系统内航空器原始雷达数据,提取各扇区历史运行信息,建立了多扇区聚合交通流模型;其次,采用贝叶斯估计理论对模型参数进行最优估计和动态更新,预测了空域扇区交通流量的未来演变趋势及其不确定范围;最后,选取国内5个典型繁忙扇区为例,以5 min为时间段,以未来1 h为预测范围,对所提预测方法进行了验证.研究结果表明:85%以上时段交通流量预测结果的绝对误差在3架以内,平均绝对误差均在2架次以内,预测结果的稳定性较好,可充分反映各空域扇区之间短时交通流的动态性和不确定性,符合空中交通的实际情况. 展开更多
关键词 空中交通管制 短时流量预测 多扇区 贝叶斯估计 不确定性 雷达数据
在线阅读 下载PDF
城市轨道交通进站客流量短时预测模型研究 被引量:16
7
作者 刘美琪 焦朋朋 孙拓 《城市轨道交通研究》 北大核心 2015年第11期13-17,29,共6页
利用数学方法可以改善城市轨道交通进站客流量的短时预测效果,促进轨道交通车站客流管理智能化水平。首先建立K近邻非参数回归模型,然后在传统卡尔曼滤波模型的观测方程中引入偏差修正系数以提高其预测精度;再采用贝叶斯方法将以上两模... 利用数学方法可以改善城市轨道交通进站客流量的短时预测效果,促进轨道交通车站客流管理智能化水平。首先建立K近邻非参数回归模型,然后在传统卡尔曼滤波模型的观测方程中引入偏差修正系数以提高其预测精度;再采用贝叶斯方法将以上两模型进行组合;最后利用2013年11月北京市地铁13号线的进站客流数据,研究对比这三类模型在早高峰、平峰、晚高峰和全天的预测精度。结果表明:K近邻非参数回归的总体预测精度最高;贝叶斯组合预测模型次之,但平峰时段效果最好;基于偏差修正系数的卡尔曼滤波模型晚高峰时适用性较差。 展开更多
关键词 城市轨道交通 短时流量预测 K近邻非参数回归 贝叶斯组合模型
在线阅读 下载PDF
面向手机信令数据的交通枢纽人流量短时预测算法 被引量:8
8
作者 林培群 雷永巍 +1 位作者 张孜 陈丽甜 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第9期89-95,共7页
为实现对重点区域人群聚集动态的有效掌握,保障区域人群的及时疏运,预防群体性安全事故的发生,以广州市火车站枢纽区域为例,通过对海量手机信令数据进行信息处理,结合地理信息系统将手机信令数据映射至研究区域,实现区域人流量的实时统... 为实现对重点区域人群聚集动态的有效掌握,保障区域人群的及时疏运,预防群体性安全事故的发生,以广州市火车站枢纽区域为例,通过对海量手机信令数据进行信息处理,结合地理信息系统将手机信令数据映射至研究区域,实现区域人流量的实时统计,同时分析了大都市火车站枢纽区域春运人流量变化情况,得出春运期间区域人流量存在周期性变化的规律,以此为基础,构建了以平均绝对百分比误差最小的k值自适应计算模型,设计了基于手机信令数据的城市交通枢纽人流量k近邻预测算法,并以节假日与非节假日两种不同交通模式环境进行算法测试.结果表明:所建立的预测算法在两种模式下其平均绝对百分比误差PMAPE分别在6%与5%以内,均能够较为准确地对区域人流量进行预测. 展开更多
关键词 城市交通 交通枢纽 手机信令数据 K近邻算法 流量短时预测
在线阅读 下载PDF
基于时空分析的短时交通流量预测模型 被引量:8
9
作者 夏英 梁中军 王国胤 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期552-560,共9页
根据交通流的时空关联性和非线性,提出一种基于时空分析的短时交通流量预测模型.在相关系数的基础上扩展时空语义,提出时空相关分析算法,并以支持向量机为预测工具进行预测.弥补现有模型在预测因子选取方面的不足,提高预测精度并避免预... 根据交通流的时空关联性和非线性,提出一种基于时空分析的短时交通流量预测模型.在相关系数的基础上扩展时空语义,提出时空相关分析算法,并以支持向量机为预测工具进行预测.弥补现有模型在预测因子选取方面的不足,提高预测精度并避免预测的人为主观性.实验结果表明了算法和模型的有效性. 展开更多
关键词 短时交通流量预测 支持向量机 时空相关系数 时空相关分析
在线阅读 下载PDF
基于图结构的城市道路短时交通流量时空预测模型 被引量:7
10
作者 王海起 李留珂 陈海波 《地理与地理信息科学》 CSCD 北大核心 2021年第4期1-9,共9页
准确、实时的城市短时交通流量预测可为驾驶员提供实时的道路状况预警,是城市智能交通系统发展的重点之一。考虑交通流量数据的时空特征,该文提出一种基于注意力机制的GC-GRU时空预测模型(STGCGRU),模型输入根据交通流量时间特性划分为... 准确、实时的城市短时交通流量预测可为驾驶员提供实时的道路状况预警,是城市智能交通系统发展的重点之一。考虑交通流量数据的时空特征,该文提出一种基于注意力机制的GC-GRU时空预测模型(STGCGRU),模型输入根据交通流量时间特性划分为邻近片段、日周期片段、周周期片段3类,以嵌入图卷积(GC)计算的门控循环单元(GRU)作为基本单元搭建Encoder-Decoder模型框架。其中,GC用以捕捉城市道路图中的空间特征,GRU用以捕捉交通流量时序特征,注意力机制用以调节交通流量的趋势变动性。基于北京市出租车GPS轨迹数据集的实验结果表明,该模型适用于短时交通流量预测,预测精度随预测时长减少而升高;未添加周期性信息模型的预测精度优于常规基准模型,添加周期性信息后预测精度提升,并优于添加周期性信息的DeepST模型。对比不同交通情况,该模型可捕捉易堵路段交通流量的趋势变动性,晚高峰时期预测精度更高,但对交通流量的突增突减不敏感。 展开更多
关键词 短时交通流量预测 图卷积 城市路网 时空特征
在线阅读 下载PDF
基于GA优化IWNN的短时交通流量预测方法 被引量:7
11
作者 吴凡 孙建红 +1 位作者 葛鹤银 刘景夏 《实验室研究与探索》 CAS 北大核心 2016年第5期134-137,212,共5页
由于交通流量的非线性、复杂性和不确定性,确定数学模型的预测方法难以满足交通管理控制中对预测精度和收敛速度的要求。为了对交通流进行准确、实时、高效的预测,提出将小波理论与神经网络相结合,并改进网络的训练过程从而构建改进型... 由于交通流量的非线性、复杂性和不确定性,确定数学模型的预测方法难以满足交通管理控制中对预测精度和收敛速度的要求。为了对交通流进行准确、实时、高效的预测,提出将小波理论与神经网络相结合,并改进网络的训练过程从而构建改进型小波神经网络;同时运用遗传算法优化网络的初始权值,最终提高了预测精度,加快了收敛速度,避免陷入局部极小。通过仿真和分析,提出的方法具有较好的预测结果。 展开更多
关键词 交通拥堵 短时交通流量预测 改进型小波神经网络 遗传算法
在线阅读 下载PDF
基于网格划分的城市短时交通流量时空预测模型 被引量:6
12
作者 王海起 王志海 +3 位作者 李留珂 孔浩然 王琼 徐建波 《计算机应用》 CSCD 北大核心 2022年第7期2274-2280,共7页
准确的交通流量预测在帮助交通管理部门采取有效的交通控制和诱导手段以及帮助出行者合理规划路线等方面具有重要意义。针对传统深度学习模型对交通数据时空特性考虑不足的问题,在卷积神经网络(CNN)和长短时记忆(LSTM)单元的理论框架下... 准确的交通流量预测在帮助交通管理部门采取有效的交通控制和诱导手段以及帮助出行者合理规划路线等方面具有重要意义。针对传统深度学习模型对交通数据时空特性考虑不足的问题,在卷积神经网络(CNN)和长短时记忆(LSTM)单元的理论框架下,结合城市交通流量的时空特性,建立了一种基于注意力机制的CNN-LSTM预测模型——STCAL。首先,采用细粒度的网格划分方法来构建交通流量的时空矩阵;其次,利用CNN模型作为空间组件来提取城市交通流量不同时期下的空间特性;最后,利用基于注意力机制的LSTM模型作为动态时间组件来捕获交通流量的时序特征和趋势变动性,并实现交通流量的预测。实验结果表明,STCAL模型与循环门单元(GRU)和时空残差网络(ST-ResNet)相比,均方根误差(RMSE)指标分别减小了17.15%和7.37%,均绝对误差(MAE)指标分别减小了22.75%和9.14%,决定系数(R2)指标分别提升了11.27%和2.37%。同时,发现该模型在规律性较高的工作日的预测效果好于周末,且对工作日早高峰的预测效果最好,可见该模型可为短时城市区域交通流量变化监测提供依据。 展开更多
关键词 短时交通流量预测 时空特性 卷积神经网络 短时记忆 注意力机制
在线阅读 下载PDF
基于多特征GBDT模型的收费站短时交通流量预测 被引量:10
13
作者 林培群 周楠楠 《广西大学学报(自然科学版)》 CAS 北大核心 2018年第3期1192-1199,共8页
为了准确地预测高速公路收费站的短时交通流量,以便收费站根据不同时段的交通流量科学合理地制定人员配置方案来缓解收费站交通拥堵,文中提出了一种基于多特征GBDT模型的预测方法。引入一种新的机器学习算法GBDT,并通过数据分析,挖掘出... 为了准确地预测高速公路收费站的短时交通流量,以便收费站根据不同时段的交通流量科学合理地制定人员配置方案来缓解收费站交通拥堵,文中提出了一种基于多特征GBDT模型的预测方法。引入一种新的机器学习算法GBDT,并通过数据分析,挖掘出时段、星期与天气3种有效的新特征,对广州机场高速机场收费站短时交通流量进行预测。结果表明,将挖掘的新特征应用于传统的BP神经网络模型建立多特征BP神经网络模型可以将预测误差降低4.67%,而文中提出的模型相对于多特征BP神经网络模型可以将预测误差降低0.91%,从而证明了该模型的有效性和可行性。 展开更多
关键词 收费站 交通流量短时预测 BP神经网络 GBDT 多特征
在线阅读 下载PDF
基于深度学习长短期记忆网络结构的地铁站短时客流量预测 被引量:36
14
作者 李梅 李静 +2 位作者 魏子健 王思达 陈赖谨 《城市轨道交通研究》 北大核心 2018年第11期42-46,77,共6页
准确预测地铁站短时客流量,有助于提前开展安全预警工作,快速做出人员疏导方案。根据上海轨道交通2016年3月2. 4亿条刷卡数据,以及该时间段的天气数据,利用Pearson相关分析法提取了客流量的7个外部天气影响因子,以及3个基于历史数据的... 准确预测地铁站短时客流量,有助于提前开展安全预警工作,快速做出人员疏导方案。根据上海轨道交通2016年3月2. 4亿条刷卡数据,以及该时间段的天气数据,利用Pearson相关分析法提取了客流量的7个外部天气影响因子,以及3个基于历史数据的内部影响因子。通过对数据的分析,综合考虑工作日、非工作日和高峰时段对客流的影响,提取2个内部显著影响因子。以上海轨道交通莘庄站为例,提出了一种基于深度学习长短期记忆(LSTM)网络结构的地铁站短时客流预测方法。最后,将预测结果与典型时间序列预测算法MLR(多元线性回归)和BP(反向传播)神经网络进行对比,验证了LSTM网络在地铁站短时客流量预测中具有更高的准确性和很好的适用性。 展开更多
关键词 地铁站 短时流量预测 深度学习 长短期记忆网络
在线阅读 下载PDF
考虑多时间尺度特征的城市轨道交通短时客流量预测模型 被引量:10
15
作者 张文娟 杨皓哲 +1 位作者 张彬 李秀杰 《交通运输系统工程与信息》 EI CSCD 北大核心 2022年第6期212-223,共12页
针对目前城市轨道交通短时客流量预测模型在构建特征时容易忽略客流变化周期依赖性的不足,提出一种考虑多时间尺度特征的混合深度学习模型(GRU-Transformer),该模型由添加注意力机制的GRU(Gate Recurrent Unit)神经网络(Attention-GRU)... 针对目前城市轨道交通短时客流量预测模型在构建特征时容易忽略客流变化周期依赖性的不足,提出一种考虑多时间尺度特征的混合深度学习模型(GRU-Transformer),该模型由添加注意力机制的GRU(Gate Recurrent Unit)神经网络(Attention-GRU)和改进的Transformer(Conv-Transformer)两模块并行构成。首先,对周周期、日周期及相邻时段这3种时间尺度下的客流数据分别进行建模,并合并各周期数据作为模型输入。其次,搭建Attention-GRU和Conv-Transformer模块分别挖掘数据连续性与周期性特征,融合特征后输出预测值。最后,采集上海市地铁2号线两站点AFC(Automatic Fare Collection)客流数据,预测5 min时间粒度下的进出站客流量。为分析各模型参数对预测结果的影响,开展模型精细化调参实验,基于所得最优参数组合验证和评估模型。结果表明,相较于5个基线模型(BPNN(Back Propagation Neural Network)、CNN(Convolutional Neural Network)、GRU、CNN-GRU及Transformer)和4个GRU-Transformer消融模型,本文提出的GRU-Transformer模型预测精度最高,具有较好的实用性。 展开更多
关键词 智能交通 短时流量预测 深度学习 城市轨道交通 GRU Transformer模型
在线阅读 下载PDF
面向短时地铁客流量预测的混合深度学习模型 被引量:7
16
作者 彭桐歆 韩勇 +1 位作者 王程 张志浩 《计算机工程》 CAS CSCD 北大核心 2022年第5期297-305,共9页
城市交通客流量精准预测是智能交通系统的重要环节,是有效管控交通、规划最佳出行线路的关键。目前城市交通客流量短时预测研究主要集中在利用深度学习模型进行时空特征的提取,忽略了对模型优化的研究。针对短时地铁客流量预测存在的问... 城市交通客流量精准预测是智能交通系统的重要环节,是有效管控交通、规划最佳出行线路的关键。目前城市交通客流量短时预测研究主要集中在利用深度学习模型进行时空特征的提取,忽略了对模型优化的研究。针对短时地铁客流量预测存在的问题,提出一种混合深度学习模型ResGRU_(Metro),将卷积神经网络、残差单元和门控循环单元相结合,捕获流量数据的时空特征。针对深度学习模型常用的损失函数难以对交通客流量峰值进行精准预测的问题,引入面向短时交通流量预测的加权平方误差,根据交通客流量的大小为预测误差赋予不同权重,并加大对交通客流量峰值处误差的惩罚,使神经网络在反向传播时更加关注峰值处的预测和误差,从而提升交通客流量峰值的预测精度。此外,通过耦合天气、空气质量等外部因子,改善模型的整体预测性能,增强模型的稳定性。实验结果表明,相比LR、PSVR、CNN等典型的预测模型,ResGRU_(Metro)模型有更高的预测精度,能够准确预测交通客流量的峰值。 展开更多
关键词 智能交通 短时流量预测 时空特征 残差神经网络 门控循环单元 加权平方误差
在线阅读 下载PDF
基于遗传算法优化小波神经网络的短时交通流量预测 被引量:19
17
作者 李会超 李鸿 张博 《计算机应用与软件》 北大核心 2018年第7期148-152,共5页
为了提高小波神经网络对具有时变性、非线性和复杂性等特点的短时交通流量预测的准确性,提出一种基于遗传算法优化小波神经网络的短时交通流量预测模型。利用遗传算法隐含并行性、自适应随机搜索及全局寻优的特性,优化小波神经网络的权... 为了提高小波神经网络对具有时变性、非线性和复杂性等特点的短时交通流量预测的准确性,提出一种基于遗传算法优化小波神经网络的短时交通流量预测模型。利用遗传算法隐含并行性、自适应随机搜索及全局寻优的特性,优化小波神经网络的权值和阈值,克服了小波神经网络易陷入局部最优、得不到最优参数的缺陷。仿真结果表明,该方法对短时交通流量具有较好的非线性拟合能力和更高的预测精度,并具有良好的应用价值。 展开更多
关键词 遗传算法 小波神经网络 短时交通流量预测
在线阅读 下载PDF
基于深度残差网络的短时交通流量预测 被引量:5
18
作者 佟健颉 黎英 王一旋 《电子测量技术》 2019年第18期85-89,共5页
建立了一个深度残差网络模型用来进行短时交通流量预测。考虑到短时交通流量数据具有时空相关性,通过采用最小角回归拟合L1正则化损失函数的方法挖掘出了预测路口与上下游路口的时空相关性,并且构建了基于时空关联性的深度残差网络预测... 建立了一个深度残差网络模型用来进行短时交通流量预测。考虑到短时交通流量数据具有时空相关性,通过采用最小角回归拟合L1正则化损失函数的方法挖掘出了预测路口与上下游路口的时空相关性,并且构建了基于时空关联性的深度残差网络预测模型。采用了美国芝加哥i-55公路的交通数据集进行了模型验证,通过实验表明预测模型比传统的预测模型准确率提高近2%~4%,可以看出该模型一定程度上提高了预测精度。 展开更多
关键词 短时交通流量预测 深度残差网络 时空关联性 深度学习
在线阅读 下载PDF
基于混合深度学习的地铁站进出客流量短时预测 被引量:20
19
作者 赵建立 石敬诗 +2 位作者 孙秋霞 任玲 刘彩红 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第5期128-134,共7页
针对城市轨道交通多站点短时客流量预测问题,本文提出一种将卷积神经网络(CNN)与残差网络(ResNet)相组合的预测模型(ResNet-CNN1D).模型将原始客流量数据作为输入,利用二维CNN与ResNet组成深层神经网络,捕捉站点间的空间特征,同时利用一... 针对城市轨道交通多站点短时客流量预测问题,本文提出一种将卷积神经网络(CNN)与残差网络(ResNet)相组合的预测模型(ResNet-CNN1D).模型将原始客流量数据作为输入,利用二维CNN与ResNet组成深层神经网络,捕捉站点间的空间特征,同时利用一维CNN捕捉客流量的时间依赖.最后,基于参数矩阵,将时间和空间特征进行加权融合,完成对目标时段中多个站点进出客流量的同时预测.采集青岛市地铁3号线刷卡数据,对模型进行验证.结果表明,相比现有传统的预测模型(ARIMA,SVR,LSTM,CLTFP,ConvLSTM),本文ResNet-CNN1D模型具有更好的预测精度. 展开更多
关键词 城市交通 短时流量预测 深度学习 地铁刷卡数据 CNN ResNet
在线阅读 下载PDF
支持短时交通流量预测的概率图模型构建与推理
20
作者 吴杰 岳昆 +1 位作者 刘惟一 赵小明 《小型微型计算机系统》 CSCD 北大核心 2011年第11期2320-2325,共6页
短时交通流量预测,是交通系统信息化和智能化交通运输管理技术领域研究的关键问题.目前的方法对历史数据具有较高的依赖程度,或者具有较高的计算成本,或者不能有效反映实际中较复杂的交通网络及各结点之间的相互关系、以及依赖的不确定... 短时交通流量预测,是交通系统信息化和智能化交通运输管理技术领域研究的关键问题.目前的方法对历史数据具有较高的依赖程度,或者具有较高的计算成本,或者不能有效反映实际中较复杂的交通网络及各结点之间的相互关系、以及依赖的不确定性,或者多种模型的组合使得预测方法较复杂.贝叶斯网是一种重要的概率图模型,本文以交通网络结构为基础,利用概率图模型在不确定性知识表示和推理方面的良好性质,考虑路口交通流量及其预测的时序依赖特征,构建了带有时序条件依赖关系的交通贝叶斯网.进而针对短时交通流量预测的实时性和高效性要求,提出了基于Gibbs采样的交通贝叶斯网近似概率推理算法,并进行交通流量的短时预测.实验结果表明,本文提出的交通贝叶斯网构建、近似推理以及相应的短时交通流量的预测方法,具有高效性、准确性和可用性. 展开更多
关键词 短时交通流量预测 概率图模型 贝叶斯网 时序依赖 近似推理
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部