期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于深度学习长短期记忆网络结构的地铁站短时客流量预测 被引量:36
1
作者 李梅 李静 +2 位作者 魏子健 王思达 陈赖谨 《城市轨道交通研究》 北大核心 2018年第11期42-46,77,共6页
准确预测地铁站短时客流量,有助于提前开展安全预警工作,快速做出人员疏导方案。根据上海轨道交通2016年3月2. 4亿条刷卡数据,以及该时间段的天气数据,利用Pearson相关分析法提取了客流量的7个外部天气影响因子,以及3个基于历史数据的... 准确预测地铁站短时客流量,有助于提前开展安全预警工作,快速做出人员疏导方案。根据上海轨道交通2016年3月2. 4亿条刷卡数据,以及该时间段的天气数据,利用Pearson相关分析法提取了客流量的7个外部天气影响因子,以及3个基于历史数据的内部影响因子。通过对数据的分析,综合考虑工作日、非工作日和高峰时段对客流的影响,提取2个内部显著影响因子。以上海轨道交通莘庄站为例,提出了一种基于深度学习长短期记忆(LSTM)网络结构的地铁站短时客流预测方法。最后,将预测结果与典型时间序列预测算法MLR(多元线性回归)和BP(反向传播)神经网络进行对比,验证了LSTM网络在地铁站短时客流量预测中具有更高的准确性和很好的适用性。 展开更多
关键词 地铁站 短时客流量预测 深度学习 长短期记忆网络
在线阅读 下载PDF
考虑多时间尺度特征的城市轨道交通短时客流量预测模型 被引量:10
2
作者 张文娟 杨皓哲 +1 位作者 张彬 李秀杰 《交通运输系统工程与信息》 EI CSCD 北大核心 2022年第6期212-223,共12页
针对目前城市轨道交通短时客流量预测模型在构建特征时容易忽略客流变化周期依赖性的不足,提出一种考虑多时间尺度特征的混合深度学习模型(GRU-Transformer),该模型由添加注意力机制的GRU(Gate Recurrent Unit)神经网络(Attention-GRU)... 针对目前城市轨道交通短时客流量预测模型在构建特征时容易忽略客流变化周期依赖性的不足,提出一种考虑多时间尺度特征的混合深度学习模型(GRU-Transformer),该模型由添加注意力机制的GRU(Gate Recurrent Unit)神经网络(Attention-GRU)和改进的Transformer(Conv-Transformer)两模块并行构成。首先,对周周期、日周期及相邻时段这3种时间尺度下的客流数据分别进行建模,并合并各周期数据作为模型输入。其次,搭建Attention-GRU和Conv-Transformer模块分别挖掘数据连续性与周期性特征,融合特征后输出预测值。最后,采集上海市地铁2号线两站点AFC(Automatic Fare Collection)客流数据,预测5 min时间粒度下的进出站客流量。为分析各模型参数对预测结果的影响,开展模型精细化调参实验,基于所得最优参数组合验证和评估模型。结果表明,相较于5个基线模型(BPNN(Back Propagation Neural Network)、CNN(Convolutional Neural Network)、GRU、CNN-GRU及Transformer)和4个GRU-Transformer消融模型,本文提出的GRU-Transformer模型预测精度最高,具有较好的实用性。 展开更多
关键词 智能交通 短时客流量预测 深度学习 城市轨道交通 GRU Transformer模型
在线阅读 下载PDF
城市轨道交通进站客流量短时预测模型研究 被引量:16
3
作者 刘美琪 焦朋朋 孙拓 《城市轨道交通研究》 北大核心 2015年第11期13-17,29,共6页
利用数学方法可以改善城市轨道交通进站客流量的短时预测效果,促进轨道交通车站客流管理智能化水平。首先建立K近邻非参数回归模型,然后在传统卡尔曼滤波模型的观测方程中引入偏差修正系数以提高其预测精度;再采用贝叶斯方法将以上两模... 利用数学方法可以改善城市轨道交通进站客流量的短时预测效果,促进轨道交通车站客流管理智能化水平。首先建立K近邻非参数回归模型,然后在传统卡尔曼滤波模型的观测方程中引入偏差修正系数以提高其预测精度;再采用贝叶斯方法将以上两模型进行组合;最后利用2013年11月北京市地铁13号线的进站客流数据,研究对比这三类模型在早高峰、平峰、晚高峰和全天的预测精度。结果表明:K近邻非参数回归的总体预测精度最高;贝叶斯组合预测模型次之,但平峰时段效果最好;基于偏差修正系数的卡尔曼滤波模型晚高峰时适用性较差。 展开更多
关键词 城市轨道交通 短时客流量预测 K近邻非参数回归 贝叶斯组合模型
在线阅读 下载PDF
面向短时地铁客流量预测的混合深度学习模型 被引量:7
4
作者 彭桐歆 韩勇 +1 位作者 王程 张志浩 《计算机工程》 CAS CSCD 北大核心 2022年第5期297-305,共9页
城市交通客流量精准预测是智能交通系统的重要环节,是有效管控交通、规划最佳出行线路的关键。目前城市交通客流量短时预测研究主要集中在利用深度学习模型进行时空特征的提取,忽略了对模型优化的研究。针对短时地铁客流量预测存在的问... 城市交通客流量精准预测是智能交通系统的重要环节,是有效管控交通、规划最佳出行线路的关键。目前城市交通客流量短时预测研究主要集中在利用深度学习模型进行时空特征的提取,忽略了对模型优化的研究。针对短时地铁客流量预测存在的问题,提出一种混合深度学习模型ResGRU_(Metro),将卷积神经网络、残差单元和门控循环单元相结合,捕获流量数据的时空特征。针对深度学习模型常用的损失函数难以对交通客流量峰值进行精准预测的问题,引入面向短时交通流量预测的加权平方误差,根据交通客流量的大小为预测误差赋予不同权重,并加大对交通客流量峰值处误差的惩罚,使神经网络在反向传播时更加关注峰值处的预测和误差,从而提升交通客流量峰值的预测精度。此外,通过耦合天气、空气质量等外部因子,改善模型的整体预测性能,增强模型的稳定性。实验结果表明,相比LR、PSVR、CNN等典型的预测模型,ResGRU_(Metro)模型有更高的预测精度,能够准确预测交通客流量的峰值。 展开更多
关键词 智能交通 短时客流量预测 时空特征 残差神经网络 门控循环单元 加权平方误差
在线阅读 下载PDF
基于混合深度学习的地铁站进出客流量短时预测 被引量:20
5
作者 赵建立 石敬诗 +2 位作者 孙秋霞 任玲 刘彩红 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第5期128-134,共7页
针对城市轨道交通多站点短时客流量预测问题,本文提出一种将卷积神经网络(CNN)与残差网络(ResNet)相组合的预测模型(ResNet-CNN1D).模型将原始客流量数据作为输入,利用二维CNN与ResNet组成深层神经网络,捕捉站点间的空间特征,同时利用一... 针对城市轨道交通多站点短时客流量预测问题,本文提出一种将卷积神经网络(CNN)与残差网络(ResNet)相组合的预测模型(ResNet-CNN1D).模型将原始客流量数据作为输入,利用二维CNN与ResNet组成深层神经网络,捕捉站点间的空间特征,同时利用一维CNN捕捉客流量的时间依赖.最后,基于参数矩阵,将时间和空间特征进行加权融合,完成对目标时段中多个站点进出客流量的同时预测.采集青岛市地铁3号线刷卡数据,对模型进行验证.结果表明,相比现有传统的预测模型(ARIMA,SVR,LSTM,CLTFP,ConvLSTM),本文ResNet-CNN1D模型具有更好的预测精度. 展开更多
关键词 城市交通 短时客流量预测 深度学习 地铁刷卡数据 CNN ResNet
在线阅读 下载PDF
基于组合模型的城市轨道站点短时客流分类预测 被引量:12
6
作者 王金水 欧雪雯 +1 位作者 陈俊岩 唐郑熠 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第6期2004-2012,共9页
轨道交通客流预测是轨道交通线网规划的重要内容,是确定轨道交通系统的线网规模、设置轨道站点及布设线路基础。不同类型的轨道站点在城市中的功能定位和布局要求等方面均存在差异,进而导致站点的进出客流量呈现显著的时空分布不均衡性... 轨道交通客流预测是轨道交通线网规划的重要内容,是确定轨道交通系统的线网规模、设置轨道站点及布设线路基础。不同类型的轨道站点在城市中的功能定位和布局要求等方面均存在差异,进而导致站点的进出客流量呈现显著的时空分布不均衡性。为了挖掘各类型站点的客流变化规律,将站点自身特征和周边环境特征组成向量因子,运用K-means聚类方法对站点进行分类。在此基础上,将影响乘客出行的多源数据作为输入特征,分别构建了随机森林(RF)模型、门控制循环单元(GRU)模型以及RF-GRU组合模型,从而进行站点短时客流分类预测。利用杭州地铁站自动检票系统(AFC)采集的刷卡客流数据,对所构建的预测模型的有效性进行检验。研究结果表明:利用7个刻画站点自身特征和周边环境特征的参数作为聚类因子,并结合站点客流时间分布数据,可将杭州市地铁站点分为就业导向型车站、职住混合型车站和住宅偏远型车站;采用平均绝对误差以及均方根误差作为评价指标,参数化模型(ARIMA),非参数化模型(SVR),深度学习模型(LSTM,GRU,SAEs和GCN),组合模型(DCRNN,STGCN,STHGCN和DSTHGCN)的预测误差依次降低,其中RF-GRU组合模型的预测精度优于其他的组合模型;对站点进行分类之后,单一模型和组合模型预测结果的精度均有提高。 展开更多
关键词 智能交通 短时客流量预测 组合预测模型 多源数据 随机森林 门控制循环单元
在线阅读 下载PDF
基于改进蝙蝠算法优化LSTM网络的短时客流预测 被引量:20
7
作者 段中兴 温倩 +2 位作者 周孟 宋婕菲 王剑 《铁道科学与工程学报》 CAS CSCD 北大核心 2021年第11期2833-2840,共8页
准确地预测地铁站短时客流量,对地铁站通风空调系统的节能优化具有重要意义。充分考虑地铁客流量非线性、随机性、周期性等特点,提出一种基于改进蝙蝠算法(IBA)优化长短期记忆(LSTM)神经网络的短时客流量预测模型(IBALSTM)。引入反向学... 准确地预测地铁站短时客流量,对地铁站通风空调系统的节能优化具有重要意义。充分考虑地铁客流量非线性、随机性、周期性等特点,提出一种基于改进蝙蝠算法(IBA)优化长短期记忆(LSTM)神经网络的短时客流量预测模型(IBALSTM)。引入反向学习、动态自适应惯性权重与拉格朗日插值法等方法改进蝙蝠的全局搜索与局部寻优能力,克服标准蝙蝠算法易早熟、易陷入局部最优值的问题;利用改进的蝙蝠算法对LSTM网络的隐含层节点数、迭代次数、初始学习率、学习率下降因子4个参数进行优化;利用西安某地铁站自动检票系统(AFC)采集的客流数据,对模型的有效性进行检验。实验结果表明:该预测模型在均方误差、均方根误差、平均绝对百分比误差等方面均优于标准蝙蝠-LSTM模型、LSTM预测模型、BP预测模型及BP-Adaboost预测模型,所提出的方法可有效应用于短时客流量预测。 展开更多
关键词 短时客流量预测 改进蝙蝠算法 LSTM网络 反向学习 动态惯性自适应权重 拉格朗日插值法
在线阅读 下载PDF
城市轨道交通进出站短时客流预测模型研究 被引量:9
8
作者 蔡昌俊 《城市轨道交通研究》 北大核心 2021年第9期14-19,24,共7页
针对城市轨道交通短时进出站客流的强随机性、周期性及非线性的特征,提出了一种基于小波变换与Adam算法优化的长短时记忆网络(LSTM)短时客流组合预测模型(即WT-LSTM组合模型),同时基于非饱和激活函数ReLU函数实现了LSTM的学习与训练。采... 针对城市轨道交通短时进出站客流的强随机性、周期性及非线性的特征,提出了一种基于小波变换与Adam算法优化的长短时记忆网络(LSTM)短时客流组合预测模型(即WT-LSTM组合模型),同时基于非饱和激活函数ReLU函数实现了LSTM的学习与训练。采用LSTM模型与WT-LSTM组合模型对广州地铁广州塔站的客流量进行预测,并对预测结果的误差进行对比分析。结果表明,WT-LSTM组合模型能够较好地预测短时客流,预测结果优于单一LSTM模型。 展开更多
关键词 城市轨道交通 短时客流量预测 组合模型 小波变换 长短期记忆网络
在线阅读 下载PDF
基于Kalman滤波的地铁换乘客流预测 被引量:16
9
作者 熊杰 关伟 孙宇星 《北京交通大学学报》 CAS CSCD 北大核心 2013年第3期112-116,121,共6页
针对地铁换乘通道的换乘客流量,提出了利用Kalman滤波进行短时客流量预测的方法.基于Kalman滤波原理对地铁换乘客流系统构建状态方程,并根据历史数据对状态方程中的状态转移矩阵进行标定,然后运用灰色关联分析的方法来确定该状态转移矩... 针对地铁换乘通道的换乘客流量,提出了利用Kalman滤波进行短时客流量预测的方法.基于Kalman滤波原理对地铁换乘客流系统构建状态方程,并根据历史数据对状态方程中的状态转移矩阵进行标定,然后运用灰色关联分析的方法来确定该状态转移矩阵在待预测时间序列上的值,进而实现客流量的预测.以北京地铁西单站换乘通道为例,从平日和假日两方面分别对该换乘通道一周内,早高峰时期客流量进行了短时预测. 展开更多
关键词 换乘通道 短时客流量预测 KALMAN滤波 灰色关联分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部