期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
融合FCM-RBF的短时交通拥堵状态预测模型 被引量:9
1
作者 张生瑞 连江南 +1 位作者 焦帅阳 周备 《重庆理工大学学报(自然科学)》 CAS 北大核心 2023年第3期12-21,共10页
针对高速公路常发性拥堵路段,提出一种融合模糊C均值聚类算法和径向基函数神经网络的短时交通拥堵状态预测模型。模型基于FCM聚类算法获取历史交通流的拥堵状态标签以及不同交通状态的聚类中心;基于RBF神经网络算法实现短时交通流参数... 针对高速公路常发性拥堵路段,提出一种融合模糊C均值聚类算法和径向基函数神经网络的短时交通拥堵状态预测模型。模型基于FCM聚类算法获取历史交通流的拥堵状态标签以及不同交通状态的聚类中心;基于RBF神经网络算法实现短时交通流参数预测。将RBF神经网络预测得到的短时交通流参数代入FCM聚类结果中,得到短时交通拥堵状态标签。通过交通流参数与交通状态的隐含关系,搭建出融合模型的基本计算架构。结果表明:FCM聚类算法训练后的分类结果更加稳定有效;RBF神经网络比对照方法具有更高的预测精度,预测相对误差基本低于1.2%;建立的FCM-RBF模型对短时交通拥堵状态预测的分类正确率达到95%,预测结果准确可靠。 展开更多
关键词 交通工程 短时交通拥堵状态预测 模糊C均值聚类 径向基函数神经网络 智能交通系统
在线阅读 下载PDF
基于模糊C均值聚类和随机森林的短时交通状态预测方法 被引量:31
2
作者 陈忠辉 凌献尧 +2 位作者 冯心欣 郑海峰 徐艺文 《电子与信息学报》 EI CSCD 北大核心 2018年第8期1879-1886,共8页
交通拥堵长期以来是城市面临的主要问题之一,解决交通拥堵瓶颈刻不容缓。准确的短时交通状态预测有利于市民预知交通出行信息,及时采取措施避免陷入拥堵困境。该文提出一种基于模糊C均值聚类(FCM)和随机森林的短时交通状态预测方法。首... 交通拥堵长期以来是城市面临的主要问题之一,解决交通拥堵瓶颈刻不容缓。准确的短时交通状态预测有利于市民预知交通出行信息,及时采取措施避免陷入拥堵困境。该文提出一种基于模糊C均值聚类(FCM)和随机森林的短时交通状态预测方法。首先,利用一种新颖的融合时空信息的自适应多核支持向量机(AMSVM)来预测短时交通流参数,包括流量、速度和占有率。其次,基于FCM算法分析历史交通流,获取历史交通状态信息。最后,利用随机森林算法分析所预测的短时交通流参数,得到最终预测的短时交通状态。该方法在融合时空信息的同时采用随机森林算法应用于短时交通状态预测这一全新的研究领域。实验结果表明,FCM对历史交通状态的评估方式适用于不同的高速路和城市道路场景。其次,随机森林比其它常见的机器学习方法具有更高的预测精度,从而提供实时可靠的短时交通出行信息。 展开更多
关键词 短时交通状态预测 随机森林 模糊C均值聚类 自适应多核支持向量机
在线阅读 下载PDF
短时交通状态预测参数粒子群算法优化研究 被引量:5
3
作者 熊志华 邵春福 姚智胜 《交通运输系统工程与信息》 EI CSCD 2008年第3期29-33,共5页
短时交通流预测是智能交通系统的核心内容和交通信息服务、交通诱导的重要基础.目前,道路交通数据采集设备的性价比越来越合理,道路上交通数据的采集设备不断完善,使得短时交通流状态的分析处理和预测成为可能.考虑到道路网交通状态的... 短时交通流预测是智能交通系统的核心内容和交通信息服务、交通诱导的重要基础.目前,道路交通数据采集设备的性价比越来越合理,道路上交通数据的采集设备不断完善,使得短时交通流状态的分析处理和预测成为可能.考虑到道路网交通状态的混沌特性和相关性,应用多维混沌时间序列可对道路网多断面交通状态进行预测.建立的多维混沌时间序列模型中有多个参数需要确定,并且与以往一维混沌时间序列预测中参数确定原则既有区别又有联系,因此在分析其差异性之后,本文利用粒子群优化算法优化模型中参数,当输入新的数据时,应用该模型就可以预测道路多点的交通状态.通过某城市快速路上7个断面交通流量来验证模型的有效性. 展开更多
关键词 智能交通 短时交通状态预测 混沌理论 多维时间序列 粒子群优化算法
在线阅读 下载PDF
基于空洞-稠密网络的交通拥堵预测模型 被引量:6
4
作者 石敏 蔡少委 易清明 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第2期124-130,共7页
在利用卷积神经网络模型对短时交通拥堵情况等预测场景进行预测时,由于模型的卷积池化操作过程会丢失部分数据,使得目标位置的信息出现丢失及特征的分辨率持续下降,导致模型的预测能力降低.针对此,本文提出一种空洞-稠密神经网络模型.首... 在利用卷积神经网络模型对短时交通拥堵情况等预测场景进行预测时,由于模型的卷积池化操作过程会丢失部分数据,使得目标位置的信息出现丢失及特征的分辨率持续下降,导致模型的预测能力降低.针对此,本文提出一种空洞-稠密神经网络模型.首先,利用空洞卷积用较少的网络参数获取更大感受野的特点,充分提取出复杂多变的数据时空特征.其次,通过下采样及稠密网络的等值映射,解决参数在神经网络层数增加过程出现退化的问题.最后,取实际的城市道路平均车速数据块对网络结构的有效性进行验证.结果表明:同卷积神经网络模型相比,该网络结构预测平均绝对误差降低3%~23%. 展开更多
关键词 空洞-稠密网络 时空特征 卷积神经网络 短时交通拥堵预测
在线阅读 下载PDF
高速公路建筑施工的短时交通流量统计预测的大数据分析 被引量:2
5
作者 刘艳荣 《工程抗震与加固改造》 北大核心 2024年第1期I0003-I0003,共1页
城市道路路网建设直接关系着市民的生活质量与城市的未来发展状况。现今时代,交通拥堵问题已成为城市发展过程中不可避免的重要问题,如何解决交通拥堵问题更是成为了城市可持续发展的重要前提。为了构建一个科学合理的城市道路交通体系.
关键词 交通拥堵问题 短时交通流量 道路交通体系 路网建设 城市道路 大数据分析 高速公路 统计预测
在线阅读 下载PDF
基于改进SVM的城市道路短时交通状态预测 被引量:5
6
作者 闫贺 朱丽 戚湧 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期129-137,共9页
为提高短时交通状态预测的精度,使交通管理者更有效地进行交通规划和管理,本文把基于L 1范数距离度量的最小二乘孪生有界支持向量机(twin bounded support vector machine,TBSVM)扩展成多分类算法用于短时交通状态预测,简称MLSTBSVM L1... 为提高短时交通状态预测的精度,使交通管理者更有效地进行交通规划和管理,本文把基于L 1范数距离度量的最小二乘孪生有界支持向量机(twin bounded support vector machine,TBSVM)扩展成多分类算法用于短时交通状态预测,简称MLSTBSVM L1.在实验数据上对MLSTBSVM L1算法的有效性进行验证,实验结果表明,相比于其他预测算法,提出的MLSTBSVM L1算法在预测精度上有较大提升. 展开更多
关键词 短时交通状态预测 机器学习 MLSTBSVM L1 算法 TBSVM算法
在线阅读 下载PDF
可预知性特殊事件下的短时交通状态预测 被引量:2
7
作者 冯小原 陈咨霖 +1 位作者 季楠 任毅龙 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第10期2721-2730,共10页
精准的短时交通状态预测是实施有效的交通管理与控制的重要依据。而可预知性特殊事件(PSEs)短时间内在其举办地点周边产生异常的交通出行需求,又因为事件发生数量少、数据样本收集困难等不利因素,往往造成预测精度难以保证。为此,通过... 精准的短时交通状态预测是实施有效的交通管理与控制的重要依据。而可预知性特殊事件(PSEs)短时间内在其举办地点周边产生异常的交通出行需求,又因为事件发生数量少、数据样本收集困难等不利因素,往往造成预测精度难以保证。为此,通过实测数据分析了PSEs下短时交通演化特性,在此基础上,采用改进的K近邻(KNN)算法框架,提出一种短时交通状态的KNN(PSE-KNN)预测模型,并通过基于深度强化学习的实时超参数优化方法将其构建成自适应PSE-KNN(APSE-KNN)模型,最后以北京市演唱会场景为例对所提模型的效果进行了验证。结果表明:所提模型在多步预测实验中,相对于其他7种对比预测模型,平均减少残差值12.43%、降低绝对值百分比误差29.90%。证明所提模型有优异的快速调整能力,其更适应于PSEs场景下短时交通状态预测任务。 展开更多
关键词 短时交通状态预测 可预知性特殊事件 K近邻 深度确定性策略梯度 强化学习
在线阅读 下载PDF
基于回声状态网络模型的短时交通流混沌预测 被引量:5
8
作者 沈富鑫 邴其春 +2 位作者 张伟健 胡嫣然 黄河 《济南大学学报(自然科学版)》 CAS 北大核心 2022年第2期142-147,154,共7页
为了提高短时交通流预测的准确度,提出基于回声状态网络模型的短时交通流混沌预测方法;利用C-C法计算相空间重构的延迟时间和嵌入维数;利用遗传算法对回声状态网络模型进行参数寻优,进而构建基于遗传算法的回声状态网络模型;采用城市快... 为了提高短时交通流预测的准确度,提出基于回声状态网络模型的短时交通流混沌预测方法;利用C-C法计算相空间重构的延迟时间和嵌入维数;利用遗传算法对回声状态网络模型进行参数寻优,进而构建基于遗传算法的回声状态网络模型;采用城市快速路实测数据进行实验验证和对比分析。结果表明,所提出方法的预测效果明显优于支持向量机模型、小波神经网络模型和反向传播神经网络模型的预测效果,平均预测精度分别提升了35.9%、42.1%和45.6%。 展开更多
关键词 交通运输工程 短时交通预测 回声状态网络模型 相空间重构
在线阅读 下载PDF
评《基于复杂城市道路网络的交通拥堵预测模型》
9
作者 闫小勇 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期1-1,共1页
复杂的城市道路网络上,交通状态瞬息万变,如何对其进行准确预测一直是交通科学以及信息科学长期的挑战。以往的基于时间序列的交通拥堵预测方法大都着眼于对单一道路上的交通流进行建模,忽略了相邻道路交通状态对自身的影响,难以在... 复杂的城市道路网络上,交通状态瞬息万变,如何对其进行准确预测一直是交通科学以及信息科学长期的挑战。以往的基于时间序列的交通拥堵预测方法大都着眼于对单一道路上的交通流进行建模,忽略了相邻道路交通状态对自身的影响,难以在复杂道路网络环境下实现高精度预测。 展开更多
关键词 城市道路网络 预测模型 交通拥堵 交通状态 信息科学 交通科学 时间序列 精度预测
在线阅读 下载PDF
基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法 被引量:16
10
作者 董春娇 邵春福 +2 位作者 周雪梅 孟梦 诸葛承祥 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期413-419,共7页
提出一种考虑交通流参数相关关系的卡尔曼滤波算法,实现阻塞流状态下道路网交通流短时预测.在交通流守恒方程的基础上,借鉴偏微分方程求解Lax-Wendroff格式离散的思想,结合阻塞流状态下交通流时间和空间特性及进出口匝道等因素的影响,... 提出一种考虑交通流参数相关关系的卡尔曼滤波算法,实现阻塞流状态下道路网交通流短时预测.在交通流守恒方程的基础上,借鉴偏微分方程求解Lax-Wendroff格式离散的思想,结合阻塞流状态下交通流时间和空间特性及进出口匝道等因素的影响,建立阻塞流状态下交通流短时预测状态空间模型,并设计基于卡尔曼滤波方法的模型求解算法.最后以北京市某一区域路网为例,进行了实证性研究.研究结果表明:所建立的阻塞流状态下交通流短时预测卡尔曼滤波算法由于同时考虑了时间和空间因素,能够使预测平均绝对百分比误差(MAPE)控制在10%以内;平均MAPE仅为7.96%.相同条件下,ARIMA模型和Elman模型预测MAPE分别为19.88%和10.51%. 展开更多
关键词 交通短时预测 阻塞流状态 状态空间模型 卡尔曼滤波
在线阅读 下载PDF
基于最近邻法的短时交通流预测 被引量:22
11
作者 周小鹏 冯奇 孙立军 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第11期1494-1498,共5页
针对交通流量变化存在周期性和随机性的特点,提出一种基于最近邻法的预测方法.着重介绍了状态向量构造、近邻范围确定和权重计算方法三方面的研究.根据流量与速度、占有率的关系,认为状态向量中不必考虑速度和占有率这两个交通参数;与... 针对交通流量变化存在周期性和随机性的特点,提出一种基于最近邻法的预测方法.着重介绍了状态向量构造、近邻范围确定和权重计算方法三方面的研究.根据流量与速度、占有率的关系,认为状态向量中不必考虑速度和占有率这两个交通参数;与传统最近邻法不同,近邻的个数不设为常量,而取决于所能搜索到的记录数;通常根据距离远近赋予权重的规则不可靠,而采用了等权重法.通过实际数据检验,预测误差低于7%. 展开更多
关键词 短时交通预测 最近邻 状态向量 权重
在线阅读 下载PDF
短时交通流预测中的特征选择算法研究 被引量:8
12
作者 万芳 黎光宇 +1 位作者 贾宁 朱宁 《交通运输系统工程与信息》 EI CSCD 北大核心 2019年第2期216-222,254,共8页
短时交通流预测是智能交通系统的重要基础,其精度直接影响到交通控制和诱导的效果.对于交通流预测中的非参数回归方法,其中一个重要的问题是状态向量的选取.本文提出基于ReliefF和Delta Test的特征选择算法来对特征向量进行选择.首先使... 短时交通流预测是智能交通系统的重要基础,其精度直接影响到交通控制和诱导的效果.对于交通流预测中的非参数回归方法,其中一个重要的问题是状态向量的选取.本文提出基于ReliefF和Delta Test的特征选择算法来对特征向量进行选择.首先使用ReliefF算法根据特征和类别的相关性对状态向量进行快速初步筛选,加快算法的执行效率.接下来以Delta Test为性能指标,使用遗传算法对状态分量的权重进行进一步优选.最后通过基于实际数据的算例,对本文方法优选的状态向量与时间序列状态向量,简单时空关联向量进行了对比.结果表明,本文的方法在一般交通状态条件下和突变交通状态下都具有较好的性能. 展开更多
关键词 智能交通 短时交通预测 状态向量选择 道路交通系统 ReliefF方法
在线阅读 下载PDF
基于GA优化IWNN的短时交通流量预测方法 被引量:7
13
作者 吴凡 孙建红 +1 位作者 葛鹤银 刘景夏 《实验室研究与探索》 CAS 北大核心 2016年第5期134-137,212,共5页
由于交通流量的非线性、复杂性和不确定性,确定数学模型的预测方法难以满足交通管理控制中对预测精度和收敛速度的要求。为了对交通流进行准确、实时、高效的预测,提出将小波理论与神经网络相结合,并改进网络的训练过程从而构建改进型... 由于交通流量的非线性、复杂性和不确定性,确定数学模型的预测方法难以满足交通管理控制中对预测精度和收敛速度的要求。为了对交通流进行准确、实时、高效的预测,提出将小波理论与神经网络相结合,并改进网络的训练过程从而构建改进型小波神经网络;同时运用遗传算法优化网络的初始权值,最终提高了预测精度,加快了收敛速度,避免陷入局部极小。通过仿真和分析,提出的方法具有较好的预测结果。 展开更多
关键词 交通拥堵 短时交通流量预测 改进型小波神经网络 遗传算法
在线阅读 下载PDF
时空因素影响下在线短时交通量预测 被引量:14
14
作者 李林超 何赏璐 张健 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第5期165-171,共7页
考虑交通流的时空因素进行短时交通流预测,能够提高预测的精度.为此,引入径向基核函数,将复杂的预测问题转化为高维空间的回归问题;然后,基于支持向量回归机并考虑时空因素影响作用建立在线的短时交通量预测模型,通过网格搜索的方法对... 考虑交通流的时空因素进行短时交通流预测,能够提高预测的精度.为此,引入径向基核函数,将复杂的预测问题转化为高维空间的回归问题;然后,基于支持向量回归机并考虑时空因素影响作用建立在线的短时交通量预测模型,通过网格搜索的方法对模型参数进行优化;最后,构造时间—空间状态向量,通过不同的状态向量对时间和空间维度的影响进行了分析.利用高速公路检测器数据,对比不同模型的精度,对在线短时交通量预测模型的有效性和可行性进行了验证.结果表明:在线模型精度优于传统的支持向量回归模型,考虑时空因素影响后交通量预测模型具有更高的精度和稳定性. 展开更多
关键词 智能交通 短时交通预测 支持向量回归 时空因素 状态向量
在线阅读 下载PDF
基于XGBoost的短时交通流预测模型 被引量:28
15
作者 钟颖 邵毅明 +1 位作者 吴文文 胡广雪 《科学技术与工程》 北大核心 2019年第30期337-342,共6页
为提高路段短时交通流的预测精度,选取路段平均旅行时间作为预测指标,建立了一种基于极端样度上升(extrem gradient boosting,XGBoost)的短时交通流预测模型。首先通过对交通流数据的分析,在考虑交通流时空特性的基础上,分别构建目标路... 为提高路段短时交通流的预测精度,选取路段平均旅行时间作为预测指标,建立了一种基于极端样度上升(extrem gradient boosting,XGBoost)的短时交通流预测模型。首先通过对交通流数据的分析,在考虑交通流时空特性的基础上,分别构建目标路段时间序列训练集、测试集以及时空序列训练集、测试集,然后基于XGBoost模型以及构建的训练样本集建立时间序列预测模型以及时空序列预测模型,并利用训练好的模型进行预测,最后将模型预测结果与线性回归模型、神经网络模型预测结果进行比较。实验结果表明:基于XGBoost的短时交通流预测模型能够对路段未来时段平均旅行时间进行比较准确的预测,其中时间序列预测模型均方根误差为5.32,时空序列预测模型均方根误差为4.82,均低于线性回归模型和神经网络模型,且相比于仅考虑时间因素的短时交通流预测模型,同时考虑时空因素的预测模型得到的误差更低,预测效果更好。 展开更多
关键词 短时交通预测 XGBoost 交通拥堵 时间序列模型 时空序列模型
在线阅读 下载PDF
非参数回归短时客流预测中状态向量研究 被引量:2
16
作者 郭晗 焦朋朋 《系统仿真学报》 CAS CSCD 北大核心 2017年第9期2128-2133,2139,共7页
采用K近邻非参数回归的方法对轨道交通站点短时进站客流量进行了预测,并对状态向量的选择进行了研究。预测结果表明:以预测时段前m个时段的历史数据作为状态向量具有较好的预测效果,而相邻站点历史客流数据虽然在数值上与预测站点的客... 采用K近邻非参数回归的方法对轨道交通站点短时进站客流量进行了预测,并对状态向量的选择进行了研究。预测结果表明:以预测时段前m个时段的历史数据作为状态向量具有较好的预测效果,而相邻站点历史客流数据虽然在数值上与预测站点的客流数据具有较大相关性,但由于其忽视了各站进站客流是相对独立的,因此不宜作为状态向量。 展开更多
关键词 短时客流预测 非参数回归 状态向量 K近邻
在线阅读 下载PDF
一种基于非参数回归的交通速度预测方法 被引量:8
17
作者 史殿习 丁涛杰 +1 位作者 丁博 刘惠 《计算机科学》 CSCD 北大核心 2016年第2期224-229,共6页
非参数回归模型是近年来提出的一种交通状态预测模型。为进一步提高预测精度,基于非参数回归模型的特点,针对近邻状态的选取问题,提出了基于速度变化趋势和密集度的变K近邻精确搜索策略,对原有模型的近邻匹配方式进行了改进和优化,进而... 非参数回归模型是近年来提出的一种交通状态预测模型。为进一步提高预测精度,基于非参数回归模型的特点,针对近邻状态的选取问题,提出了基于速度变化趋势和密集度的变K近邻精确搜索策略,对原有模型的近邻匹配方式进行了改进和优化,进而提出了一种短时交通平均速度预测模型。利用北京市浮动车系统数据对算法精度进行了验证,结果表明,该模型的预测精度优于基础的非参数回归和BP神经网络模型,并能为短时交通速度预测提供可行的结果。 展开更多
关键词 非参数回归 速度预测 短时交通状态
在线阅读 下载PDF
基于非线性时间序列模型的城市道路短期交通流预测研究 被引量:12
18
作者 孙湘海 刘潭秋 《土木工程学报》 EI CSCD 北大核心 2008年第1期104-109,共6页
对应于城市道路短期交通流复杂的非线性特征,采用一种非线性的时间序列模型来对其变化规律进行探索,以期获得城市道路短期交通流的精确预测。根据现实情况,可以将城市道路的交通流条件划分为两种状态:交通拥堵和交通畅通,在不同的状态下... 对应于城市道路短期交通流复杂的非线性特征,采用一种非线性的时间序列模型来对其变化规律进行探索,以期获得城市道路短期交通流的精确预测。根据现实情况,可以将城市道路的交通流条件划分为两种状态:交通拥堵和交通畅通,在不同的状态下,交通流表现出不同的变化特征,一个二制度自我激励阈值自回归(SETAR)模型的结构能够很好地与之相符。以现实中的城市道路短期交通流数据为样本所进行的实例分析结果表明,被估计模型获得了很好的仿真结果,并能够合理地解释城市道路短期交通流的非线性特征。以此为基础,用估计所确定模型进行城市道路短期交通流的样本外预测,结果表明该模型不仅有较高的预测精度,且预测表现明显优于自回归求和移动平均(ARIMA)模型。 展开更多
关键词 城市道路短期交通 自我激励阈值自回归模型 交通拥堵状态 交通畅通状态 预测
在线阅读 下载PDF
延迟深度回声状态网络及其在时间序列预测中的应用 被引量:3
19
作者 薄迎春 张欣 刘宝 《自动化学报》 EI CSCD 北大核心 2020年第8期1644-1653,共10页
为提高回声状态网络对于时间序列预测问题的处理能力,本文提出了一种延迟深度回声状态网络构造方法.该方法将多个子神经元池顺序连接,每两个相邻的子神经元池之间嵌入了一个滞后环节.由于滞后环节的存在,该网络可将长时记忆任务转化为... 为提高回声状态网络对于时间序列预测问题的处理能力,本文提出了一种延迟深度回声状态网络构造方法.该方法将多个子神经元池顺序连接,每两个相邻的子神经元池之间嵌入了一个滞后环节.由于滞后环节的存在,该网络可将长时记忆任务转化为一系列短时记忆任务,从而简化长时依赖问题的求解,同时降低神经元池的构建难度.实验表明,该网络具有强大的短时记忆容量,对初始参数有较好的鲁棒性,对时间序列预测问题的处理能力也比常规回声状态网络有显著提高. 展开更多
关键词 人工神经网络 回声状态网络 深度学习 短时记忆容量 时间序列预测
在线阅读 下载PDF
基于异常值识别卡尔曼滤波器的短期交通流预测 被引量:16
20
作者 白伟华 张传斌 +1 位作者 张塽旖 周腾 《计算机应用研究》 CSCD 北大核心 2021年第3期817-821,共5页
针对智慧交通的需求提出了一种新颖有效的短时交通流预测方法,通过异常值识别扩展了卡尔曼滤波,使其能对噪声进行识别和过滤——异常值识别卡尔曼滤波器。利用卡尔曼滤波能有效地过滤导致系统不确定性的交通流波动,但这可能会使指示交... 针对智慧交通的需求提出了一种新颖有效的短时交通流预测方法,通过异常值识别扩展了卡尔曼滤波,使其能对噪声进行识别和过滤——异常值识别卡尔曼滤波器。利用卡尔曼滤波能有效地过滤导致系统不确定性的交通流波动,但这可能会使指示交通流突变的细微线索丢失,为了提升预测精度,应用离散小波变换对原始信号进行识别处理,在去掉异常值的同时保留原有对预测有效的信号源信息,此外还使用了历史参考值对预测值进行修正。在四个基准数据集上的大量实验表明,与常用及最新的预测模型相比,其结果MAPE平均降低了2.919%,RMSE平均降低了79.582。 展开更多
关键词 卡尔曼滤波 有源噪声控制 短时交通预测 状态向量
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部