期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BERT字句向量与差异注意力的短文本语义匹配策略
被引量:
1
1
作者
王钦晨
段利国
+2 位作者
王君山
张昊妍
郜浩
《计算机工程与科学》
CSCD
北大核心
2024年第7期1321-1330,共10页
短文本语义匹配是自然语言处理领域中的一个核心问题,可广泛应用于自动问答、搜索引擎等领域。过去的工作大多只考虑文本之间的相似部分,忽略了文本之间的差异部分,从而使模型无法充分利用到决定文本之间是否匹配的关键信息。针对上述问...
短文本语义匹配是自然语言处理领域中的一个核心问题,可广泛应用于自动问答、搜索引擎等领域。过去的工作大多只考虑文本之间的相似部分,忽略了文本之间的差异部分,从而使模型无法充分利用到决定文本之间是否匹配的关键信息。针对上述问题,提出一种基于BERT字句向量与差异注意力的短文本语义匹配策略,利用BERT对句子对进行向量化表示,使用BiLSTM并引入多头差异注意力机制获取当前字向量与文本全局语义信息之间表征意图差异的注意力权重,结合一维卷积神经网络对句子对的语义特征向量进行降维,最后拼接字句向量并送入全连接层计算出2个句子之间的语义匹配度。通过在LCQMC和BQ Corpus数据集上的实验表明,该策略可以有效提取文本语义差异信息,从而使模型表现出更好的效果。
展开更多
关键词
短文本语义匹配
字句向量
表征意图
差异注意
在线阅读
下载PDF
职称材料
融合多粒度信息与外部知识的短文本匹配模型
被引量:
4
2
作者
梁登玉
刘大明
《计算机工程》
CAS
CSCD
北大核心
2022年第8期129-135,143,共8页
中文短文本通常使用单词序列而非字符序列进行语义匹配,以获得更好的语义匹配性能。然而,中文分词可能是错误或模糊的,容易引入噪声或者错误传播,从而损害模型的匹配性能。此外,多数中文词汇具有一词多义的特点,短文本由于缺少上下文环...
中文短文本通常使用单词序列而非字符序列进行语义匹配,以获得更好的语义匹配性能。然而,中文分词可能是错误或模糊的,容易引入噪声或者错误传播,从而损害模型的匹配性能。此外,多数中文词汇具有一词多义的特点,短文本由于缺少上下文环境,相比一词多义的长文本更难理解,这对于模型正确捕获语义信息是一个更大的挑战。提出一种短文本匹配模型,使用词格长短期记忆网络(Lattice LSTM)融合字符和字符序列的多粒度信息。引入外部知识HowNet解决多义词的问题,使用软注意力机制获取2个句子间的交互信息,并利用均值池化和最大池化算法进一步提取句子的特征信息,获取句子级语义编码表示。在数据集LCQMC和BQ上的实验结果表明,与ESIM、BIMPM和Lattice-CNN模型相比,该模型能有效提升中文短文本语义匹配的准确率。
展开更多
关键词
短文本语义匹配
词格长短期记忆网络
多粒度信息
外部知识
软注意力机制
在线阅读
下载PDF
职称材料
题名
基于BERT字句向量与差异注意力的短文本语义匹配策略
被引量:
1
1
作者
王钦晨
段利国
王君山
张昊妍
郜浩
机构
太原理工大学计算机科学与数据学院(大数据学院)
山西电子科技学院信创产业学院
北京市公安局网络安全保卫总队
出处
《计算机工程与科学》
CSCD
北大核心
2024年第7期1321-1330,共10页
基金
山西省自然科学基金(202203021221234)。
文摘
短文本语义匹配是自然语言处理领域中的一个核心问题,可广泛应用于自动问答、搜索引擎等领域。过去的工作大多只考虑文本之间的相似部分,忽略了文本之间的差异部分,从而使模型无法充分利用到决定文本之间是否匹配的关键信息。针对上述问题,提出一种基于BERT字句向量与差异注意力的短文本语义匹配策略,利用BERT对句子对进行向量化表示,使用BiLSTM并引入多头差异注意力机制获取当前字向量与文本全局语义信息之间表征意图差异的注意力权重,结合一维卷积神经网络对句子对的语义特征向量进行降维,最后拼接字句向量并送入全连接层计算出2个句子之间的语义匹配度。通过在LCQMC和BQ Corpus数据集上的实验表明,该策略可以有效提取文本语义差异信息,从而使模型表现出更好的效果。
关键词
短文本语义匹配
字句向量
表征意图
差异注意
Keywords
short text semantic matching
word sentence vector
represent intention
difference notice
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
融合多粒度信息与外部知识的短文本匹配模型
被引量:
4
2
作者
梁登玉
刘大明
机构
上海电力大学计算机科学与技术学院
出处
《计算机工程》
CAS
CSCD
北大核心
2022年第8期129-135,143,共8页
基金
甘肃省自然科学基金(SKLLDJ032016021)。
文摘
中文短文本通常使用单词序列而非字符序列进行语义匹配,以获得更好的语义匹配性能。然而,中文分词可能是错误或模糊的,容易引入噪声或者错误传播,从而损害模型的匹配性能。此外,多数中文词汇具有一词多义的特点,短文本由于缺少上下文环境,相比一词多义的长文本更难理解,这对于模型正确捕获语义信息是一个更大的挑战。提出一种短文本匹配模型,使用词格长短期记忆网络(Lattice LSTM)融合字符和字符序列的多粒度信息。引入外部知识HowNet解决多义词的问题,使用软注意力机制获取2个句子间的交互信息,并利用均值池化和最大池化算法进一步提取句子的特征信息,获取句子级语义编码表示。在数据集LCQMC和BQ上的实验结果表明,与ESIM、BIMPM和Lattice-CNN模型相比,该模型能有效提升中文短文本语义匹配的准确率。
关键词
短文本语义匹配
词格长短期记忆网络
多粒度信息
外部知识
软注意力机制
Keywords
short text semantic matching
Lattice Long Short Term Memory(Lattice LSTM)
multi-granularity information
external knowledge
soft-attention mechanism
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BERT字句向量与差异注意力的短文本语义匹配策略
王钦晨
段利国
王君山
张昊妍
郜浩
《计算机工程与科学》
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
2
融合多粒度信息与外部知识的短文本匹配模型
梁登玉
刘大明
《计算机工程》
CAS
CSCD
北大核心
2022
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部