期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于3D-LCRN视频异常行为识别方法 被引量:9
1
作者 胡薰尹 管业鹏 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第11期183-193,共11页
自动准确识别监控视频中的异常行为在安防领域具有广泛的应用前景.本文提出一种基于3D-LCRN(3D Long-short-term Convolutional Recurrent Network)视觉时序模型的视频异常行为识别方法.首先,基于视频图像帧间的结构相似性,结合光照感... 自动准确识别监控视频中的异常行为在安防领域具有广泛的应用前景.本文提出一种基于3D-LCRN(3D Long-short-term Convolutional Recurrent Network)视觉时序模型的视频异常行为识别方法.首先,基于视频图像帧间的结构相似性,结合光照感应与光照补偿机制进行背景建模,获取对光照突变与背景运动不敏感的矫正光流场与矫正运动历史图.同时,针对异常与正常行为视频数据失衡问题,计算三通道矫正光流运动历史图COFMHI(corrected optical flow motion history image),随机提取视觉词块进行聚类,对样本数量与维度进行双向扩充,充分获取样本的微分和积分运动信息.在此基础上,采用3D-CNN深度学习网络模型对COFMHI进行学习,获取局部短时序时空-域特征,结合可学习贡献因子加权的LSTM网络以压制无关、冗余、具有混淆性的视频片段,进一步提取由短时序-长时序,由局部-全局的多层次时-空域特征用于异常行为识别.通过与同类方法的客观定量对比,实验结果表明,本文方法在光照突变与背景运动等复杂场景下具有优异的异常行为识别性能,进一步表明该方法有效、可行. 展开更多
关键词 矫正光流运动历史图 样本扩充 3D-LCRN 3D-CNN LSTM 异常行为识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部