An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2...An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2-D)thermo-elasticity theory.Firstly,the beam was divided into a series of layers with uniform material properties along the interfaces of the beam.The uniform thermo-load acted on each layer was transformed into a combination of the normal surface forces acted at the two ends and the transverse thermo-load.Secondly,the state space method was employed to obtain the general solutions of displacements and stresses in an arbitrary layer.Thirdly,based on the interfacial continuity conditions between adjacent layers,the relations of displacement and stress components between the top and bottom layers of the beam were recursively derived by use of the transfer-matrix method.The unknowns in the solutions can be solved by the mechanical loads acted on the top and bottom surfaces.The convergence of the present solutions was checked.The comparative study of the present solutions with the Timoshenko’s solutions and the finite element(FE)solutions was carried out.The effects of material properties variable with temperature on the thermo-elastic behavior of laminated beams were discussed in detail.展开更多
The addition of basement beneath existing building changes the underpinning pile from fully embedded to partially embedded,and thus influences the mechanical properties of pile.In the past,scholars paid attention to t...The addition of basement beneath existing building changes the underpinning pile from fully embedded to partially embedded,and thus influences the mechanical properties of pile.In the past,scholars paid attention to the change in the bearing capacity of pile but neglected the difference of dynamic characteristics before and after construction,and potential changes in stress history of remaining soil are also ignored.In this work,a calculation model is built to investigate the influence of excavation on dynamic impedance of underpinning pile considering the effect of stress history.The soil is simulated by the dynamic Winkler foundation,which is characterized by springs and dashpots.Properties of remaining soil after excavation are updated to consider the effect of stress history through modifying the initial shear modulus and related parameters.The dynamic impedance of pile after excavation is obtained based on the transfer matrix method.The parameter study is carried out to evaluate the dynamic impedance with various excavation depths,considering or ignoring stress history effect,and various element lengths.The results show that shallow soil plays an important role to dynamic impedance,and overestimated dynamic impedance is obtained if not considering the stress history effect.展开更多
基金Project(2012CB026205)supported by the National Basic Research Program of ChinaProjects(51608264,51778289)supported by the National Natural Science Foundation of ChinaProject(2014Y01)supported by the Transportation Science and Technology Project of Jiangsu Province,China
文摘An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2-D)thermo-elasticity theory.Firstly,the beam was divided into a series of layers with uniform material properties along the interfaces of the beam.The uniform thermo-load acted on each layer was transformed into a combination of the normal surface forces acted at the two ends and the transverse thermo-load.Secondly,the state space method was employed to obtain the general solutions of displacements and stresses in an arbitrary layer.Thirdly,based on the interfacial continuity conditions between adjacent layers,the relations of displacement and stress components between the top and bottom layers of the beam were recursively derived by use of the transfer-matrix method.The unknowns in the solutions can be solved by the mechanical loads acted on the top and bottom surfaces.The convergence of the present solutions was checked.The comparative study of the present solutions with the Timoshenko’s solutions and the finite element(FE)solutions was carried out.The effects of material properties variable with temperature on the thermo-elastic behavior of laminated beams were discussed in detail.
基金Projects(51878487,41672266)supported by the National Natural Science Foundation of China。
文摘The addition of basement beneath existing building changes the underpinning pile from fully embedded to partially embedded,and thus influences the mechanical properties of pile.In the past,scholars paid attention to the change in the bearing capacity of pile but neglected the difference of dynamic characteristics before and after construction,and potential changes in stress history of remaining soil are also ignored.In this work,a calculation model is built to investigate the influence of excavation on dynamic impedance of underpinning pile considering the effect of stress history.The soil is simulated by the dynamic Winkler foundation,which is characterized by springs and dashpots.Properties of remaining soil after excavation are updated to consider the effect of stress history through modifying the initial shear modulus and related parameters.The dynamic impedance of pile after excavation is obtained based on the transfer matrix method.The parameter study is carried out to evaluate the dynamic impedance with various excavation depths,considering or ignoring stress history effect,and various element lengths.The results show that shallow soil plays an important role to dynamic impedance,and overestimated dynamic impedance is obtained if not considering the stress history effect.