期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多Agent的远程故障诊断系统架构研究 被引量:3
1
作者 黎洪生 刘俊刚 王为东 《计算机应用》 CSCD 北大核心 2001年第8期9-10,13,共3页
基于Agent及多Agent的概念和技术及其应用系统具有的多方面良好特性 ,如主动性、智能性、交互性、协作性、移动性等 ,为研究实现远程故障诊断系统 (IRDS)提供了一种崭新的架构思想与方法 ,这种架构实现有利于保障IRDS的开放性、扩展性及... 基于Agent及多Agent的概念和技术及其应用系统具有的多方面良好特性 ,如主动性、智能性、交互性、协作性、移动性等 ,为研究实现远程故障诊断系统 (IRDS)提供了一种崭新的架构思想与方法 ,这种架构实现有利于保障IRDS的开放性、扩展性及对Internet环境的适应性等方面的特性。 展开更多
关键词 AGENT 远程故障诊断系统 人工智能 INTERNET 知识学习机
在线阅读 下载PDF
A physics-informed machine learning solution for landslide susceptibility mapping based on three-dimensional slope stability evaluation
2
作者 WANG Yun-hao WANG Lu-qi +4 位作者 ZHANG Wen-gang LIU Song-lin SUN Wei-xin HONG Li ZHU Zheng-wei 《Journal of Central South University》 CSCD 2024年第11期3838-3853,共16页
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection... Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance. 展开更多
关键词 machine learning physics-informed model negative samples selection INTERPRETABILITY landslide susceptibility mapping
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部