期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向知识图谱的会话式机器阅读理解研究综述 被引量:1
1
作者 胡娟 奚雪峰 崔志明 《计算机工程与应用》 CSCD 北大核心 2024年第3期17-28,共12页
对话式机器阅读理解随着数据集的发展而发展,目的在于让机器在理解文章内容的基础上能够进行多轮对话。但现有的模型方法无法从对话历史中捕获到与当前问题最相关的历史信息,模型的推理能力较差,很难获取实体间的隐含信息。知识图谱应... 对话式机器阅读理解随着数据集的发展而发展,目的在于让机器在理解文章内容的基础上能够进行多轮对话。但现有的模型方法无法从对话历史中捕获到与当前问题最相关的历史信息,模型的推理能力较差,很难获取实体间的隐含信息。知识图谱应用于推理问答是当前的一大研究热点。知识图谱技术可以推断出实体间的隐含关系,应用于推理问答则能够提升模型的推理问答能力,提高预测的准确率。近年来,知识图谱推理技术的广泛应用,极大地推动了知识图谱推理问答的发展。对基于知识图谱的会话式机器阅读理解从三方面进行总结:介绍了会话式机器阅读理解领域的数据集以及当前的一些典型的模型方法,并对模型的性能和优缺点作了简要的分析与比较;介绍了知识图谱的定义、架构以及四大核心技术,并简要介绍了三大类知识图谱推理问答的模型方法;最后总结工作,并根据会话式机器阅读理解的数据集特点和知识图谱推理问答模型的缺点,对未来的研究重点进行展望。 展开更多
关键词 机器阅读理解 多轮对话 知识图谱 知识图谱推理问答
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部