针对知识推理模型在捕获实体之间的复杂语义特征方面难以捕捉多层次语义信息,同时未考虑单一路径的可解释性对正确答案的影响权重不同等问题,提出一种融合路径与子图特征的知识图谱(KG)多跳推理模型PSHAM(Hierarchical Attention Model ...针对知识推理模型在捕获实体之间的复杂语义特征方面难以捕捉多层次语义信息,同时未考虑单一路径的可解释性对正确答案的影响权重不同等问题,提出一种融合路径与子图特征的知识图谱(KG)多跳推理模型PSHAM(Hierarchical Attention Model fusing Path-Subgraph features)。PS-HAM将实体邻域信息与连接路径信息进行融合,并针对不同路径探索多粒度的特征。首先,使用路径级特征提取模块提取每个实体对之间的连接路径,并采用分层注意力机制捕获不同粒度的信息,且将这些信息作为路径级的表示;其次,使用子图特征提取模块通过关系图卷积网络(RGCN)聚合实体的邻域信息;最后,使用路径-子图特征融合模块对路径级与子图级特征向量进行融合,以实现融合推理。在两个公开数据集上进行实验的结果表明,PS-HAM在指标平均倒数秩(MRR)和Hit@k(k=1,3,10)上的性能均存在有效提升。对于指标MRR,与MemoryPath模型相比,PS-HAM在FB15k-237和WN18RR数据集上分别提升了1.5和1.2个百分点。同时,对子图跳数进行的参数验证的结果表明,PS-HAM在两个数据集上都在子图跳数在3时推理效果达到最佳。展开更多
传统的知识图谱表示学习模型主要聚焦于三元组内部的结构信息,而未能充分利用外部语义增强嵌入表征能力,如没有充分考虑实体间的多步关系路径信息以及不同路径的重要程度,且没有利用实体描述信息增强上下文感知能力。为提升知识图谱的...传统的知识图谱表示学习模型主要聚焦于三元组内部的结构信息,而未能充分利用外部语义增强嵌入表征能力,如没有充分考虑实体间的多步关系路径信息以及不同路径的重要程度,且没有利用实体描述信息增强上下文感知能力。为提升知识图谱的应用效果,提出融合多步关系路径和实体描述信息的知识图谱表示学习(MPDRL)模型。首先,对两实体间的路径信息进行编码,并使用自注意力机制计算路径权重,从而获得关系路径信息的表示;其次,使用BERT(Bidirectional Encoder Representations from Transformers)模型对实体描述信息进行编码,并利用双向注意力机制计算实体描述信息嵌入与三元组关系嵌入之间的注意力权重,从而增强实体的语义信息;最后,将关系路径信息嵌入、实体描述信息嵌入和三元组结构嵌入融合起来进行训练。为评估模型性能,在公开数据集上针对所提模型和基准模型进行链接预测和三元组分类的实验。结果表明:在链接预测任务中,与融合关系路径与实体描述信息的知识图谱表示学习方法(PDRL)、多跳关系路径模型Att-ConvBiLSTM以及融合实体描述与关系路径信息的知识图谱嵌入模型TPKGE相比,所提模型在FB15k-237数据集上的Hit@10指标分别提高了5.7、2.9、2.5个百分点;在三元组分类任务上,所提模型在FB15k-237和WN18RR数据集上的准确率较最优基准模型PDRL分别提升了2.81和0.90个百分点。展开更多
针对现有的归纳关系预测方法中大多只考虑实体之间的关系路径,未考虑关系上下文包含的头尾实体的性质,提出一种融合关系路径和关系上下文的归纳关系预测(inductive relation prediction fusing relation path and context,IRP-RPC)模型...针对现有的归纳关系预测方法中大多只考虑实体之间的关系路径,未考虑关系上下文包含的头尾实体的性质,提出一种融合关系路径和关系上下文的归纳关系预测(inductive relation prediction fusing relation path and context,IRP-RPC)模型,将关系上下文作为关系路径的补充来进行归纳关系预测.该方法仅依赖于关系语义信息,因此能够自然地推广到完全归纳的设置.先使用随机行走寻径策略获取关系路径和关系上下文,再设计并实现一个层次化的融合了门控网络的Transformer架构来统一聚合关系路径和关系上下文,以捕获实体之间的联系和实体的内在属性,并采用这些组件的自适应加权组合来做出最终预测.在公开的FB15K-237和NELL-995的8个版本归纳数据集上进行实验,与9个基线模型相比,IRP-RPC模型在精确率-召回率曲线下的面积(area under the precision-recall curve,AUC-PR)和hits@10指标上均取得了优异的性能,验证了其有效性和可推广性.研究表明,IRP-RPC模型通过融合关系路径和关系上下文,能够更全面地建模实体间的语义联系与结构信息,在解决传统归纳关系预测方法中路径信息与上下文信息利用不足的问题上具有显著优势.展开更多
知识图谱表示学习旨在通过学习的方法将知识图谱中的实体和关系映射到一个连续的低维向量空间而获得其向量表示.已有的知识图谱表示学习方法大多仅从三元组角度考虑实体间的单步关系,未能有效利用多步关系路径及其实体描述等重要信息,...知识图谱表示学习旨在通过学习的方法将知识图谱中的实体和关系映射到一个连续的低维向量空间而获得其向量表示.已有的知识图谱表示学习方法大多仅从三元组角度考虑实体间的单步关系,未能有效利用多步关系路径及其实体描述等重要信息,从而影响性能.针对上述问题,提出了一种融合关系路径与实体描述的知识图谱表示学习模型.首先,对知识图谱中的多步关系路径进行联合表示,将路径上的所有关系和实体相加,得到关系路径信息的表示;其次,使用BERT(bidirectional encoder representations from transformers)模型对实体描述信息进行编码,得到相对应的语义表示;最后,对知识图谱中的三元组表示、实体描述的语义表示以及关系路径的表示进行融合训练,得到融合向量表示.在FB15K,WN18,FB15K-237,WN18RR数据集上,对提出的模型和基准模型进行链接预测和三元组分类任务,实验结果表明,与现有的基准模型相比,该模型在2项任务中均具有更高的准确性,证明了方法的有效性和优越性.展开更多
文摘传统的知识图谱表示学习模型主要聚焦于三元组内部的结构信息,而未能充分利用外部语义增强嵌入表征能力,如没有充分考虑实体间的多步关系路径信息以及不同路径的重要程度,且没有利用实体描述信息增强上下文感知能力。为提升知识图谱的应用效果,提出融合多步关系路径和实体描述信息的知识图谱表示学习(MPDRL)模型。首先,对两实体间的路径信息进行编码,并使用自注意力机制计算路径权重,从而获得关系路径信息的表示;其次,使用BERT(Bidirectional Encoder Representations from Transformers)模型对实体描述信息进行编码,并利用双向注意力机制计算实体描述信息嵌入与三元组关系嵌入之间的注意力权重,从而增强实体的语义信息;最后,将关系路径信息嵌入、实体描述信息嵌入和三元组结构嵌入融合起来进行训练。为评估模型性能,在公开数据集上针对所提模型和基准模型进行链接预测和三元组分类的实验。结果表明:在链接预测任务中,与融合关系路径与实体描述信息的知识图谱表示学习方法(PDRL)、多跳关系路径模型Att-ConvBiLSTM以及融合实体描述与关系路径信息的知识图谱嵌入模型TPKGE相比,所提模型在FB15k-237数据集上的Hit@10指标分别提高了5.7、2.9、2.5个百分点;在三元组分类任务上,所提模型在FB15k-237和WN18RR数据集上的准确率较最优基准模型PDRL分别提升了2.81和0.90个百分点。
文摘针对现有的归纳关系预测方法中大多只考虑实体之间的关系路径,未考虑关系上下文包含的头尾实体的性质,提出一种融合关系路径和关系上下文的归纳关系预测(inductive relation prediction fusing relation path and context,IRP-RPC)模型,将关系上下文作为关系路径的补充来进行归纳关系预测.该方法仅依赖于关系语义信息,因此能够自然地推广到完全归纳的设置.先使用随机行走寻径策略获取关系路径和关系上下文,再设计并实现一个层次化的融合了门控网络的Transformer架构来统一聚合关系路径和关系上下文,以捕获实体之间的联系和实体的内在属性,并采用这些组件的自适应加权组合来做出最终预测.在公开的FB15K-237和NELL-995的8个版本归纳数据集上进行实验,与9个基线模型相比,IRP-RPC模型在精确率-召回率曲线下的面积(area under the precision-recall curve,AUC-PR)和hits@10指标上均取得了优异的性能,验证了其有效性和可推广性.研究表明,IRP-RPC模型通过融合关系路径和关系上下文,能够更全面地建模实体间的语义联系与结构信息,在解决传统归纳关系预测方法中路径信息与上下文信息利用不足的问题上具有显著优势.
文摘知识图谱表示学习旨在通过学习的方法将知识图谱中的实体和关系映射到一个连续的低维向量空间而获得其向量表示.已有的知识图谱表示学习方法大多仅从三元组角度考虑实体间的单步关系,未能有效利用多步关系路径及其实体描述等重要信息,从而影响性能.针对上述问题,提出了一种融合关系路径与实体描述的知识图谱表示学习模型.首先,对知识图谱中的多步关系路径进行联合表示,将路径上的所有关系和实体相加,得到关系路径信息的表示;其次,使用BERT(bidirectional encoder representations from transformers)模型对实体描述信息进行编码,得到相对应的语义表示;最后,对知识图谱中的三元组表示、实体描述的语义表示以及关系路径的表示进行融合训练,得到融合向量表示.在FB15K,WN18,FB15K-237,WN18RR数据集上,对提出的模型和基准模型进行链接预测和三元组分类任务,实验结果表明,与现有的基准模型相比,该模型在2项任务中均具有更高的准确性,证明了方法的有效性和优越性.