为研究不同进口高度h的涡流截流装置的截流特性,选用瞬态不可压缩流动的N-S方程和重整化群RNG k-ε湍流模型,采用欧拉模型中的VOF(volume of fluid)法对涡流截流装置进行了数值模拟,分析了进口高度h对涡流截流装置截流特性、截流效率的...为研究不同进口高度h的涡流截流装置的截流特性,选用瞬态不可压缩流动的N-S方程和重整化群RNG k-ε湍流模型,采用欧拉模型中的VOF(volume of fluid)法对涡流截流装置进行了数值模拟,分析了进口高度h对涡流截流装置截流特性、截流效率的影响,并且研究了涡流装置内部流场分布特性,同时对涡流截流装置的截流特性进行了试验验证。结果表明,进口高度越小,截流能力越强;涡流截流装置的截流效率,随着高度h增大先减小后增大,转折点在3h/5~4h/5之间;当进口宽度固定时,为了保证不发生溢流或者堵塞,且能够实现较好截流,涡流截流装置的进口高度应选择4h/5~5h/5之间,此时,涡流装置的进口截面面积大于出口截面面积。涡流截流装置的截流主要是因为在装置内部形成了局部低压,静压力转换为流体运动的动压力,使流体产生高速旋流,发生了旋流截流。该研究可为城市污水截流装置提供新的可选设计方法,降低污水溢流或者内涝发生率。展开更多
A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω t...A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.展开更多
Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process...Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process that triggers and controls the CPFF are extremely important for the exploration of new mineral deposits and underground oil resources. From the viewpoint of science, the CPFF within the upper crust can be treated as a kind of thermodynamic instability problem of pore-fluid in fluid-saturated porous media. The key issue of dealing with this kind of problem is to assess whether a nonlinear thermodynamic system under consideration is supercritical. To overcome limitations of using theoretical analysis and experimental methods in dealing with the CPFF problems within the upper crust, finite element modeling has been broadly employed for solving this kind of problem over the past two decades. The main purpose of this paper is to overview recent developments and applications of finite element modeling associated with solving the CPFF problems in large length-scale geological systems of complicated geometries and complex material distributions. In particular, two kinds of commonly-used finite element modeling approaches, namely the steady-state and transient-state approaches, and their advantages/disadvantages are thoroughly presented and discussed.展开更多
文摘为研究不同进口高度h的涡流截流装置的截流特性,选用瞬态不可压缩流动的N-S方程和重整化群RNG k-ε湍流模型,采用欧拉模型中的VOF(volume of fluid)法对涡流截流装置进行了数值模拟,分析了进口高度h对涡流截流装置截流特性、截流效率的影响,并且研究了涡流装置内部流场分布特性,同时对涡流截流装置的截流特性进行了试验验证。结果表明,进口高度越小,截流能力越强;涡流截流装置的截流效率,随着高度h增大先减小后增大,转折点在3h/5~4h/5之间;当进口宽度固定时,为了保证不发生溢流或者堵塞,且能够实现较好截流,涡流截流装置的进口高度应选择4h/5~5h/5之间,此时,涡流装置的进口截面面积大于出口截面面积。涡流截流装置的截流主要是因为在装置内部形成了局部低压,静压力转换为流体运动的动压力,使流体产生高速旋流,发生了旋流截流。该研究可为城市污水截流装置提供新的可选设计方法,降低污水溢流或者内涝发生率。
基金Projects(51239005,51009072) supported by the National Natural Science Foundation of ChinaProject(2011BAF14B04) supported by the National Science&Technology Pillar Program of ChinaProject(13JDG084) supported by the Research Foundation for Advanced Talents of Jiansu University,China
文摘A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.
基金Project(11272359)supported by the National Natural Science Foundation of China
文摘Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process that triggers and controls the CPFF are extremely important for the exploration of new mineral deposits and underground oil resources. From the viewpoint of science, the CPFF within the upper crust can be treated as a kind of thermodynamic instability problem of pore-fluid in fluid-saturated porous media. The key issue of dealing with this kind of problem is to assess whether a nonlinear thermodynamic system under consideration is supercritical. To overcome limitations of using theoretical analysis and experimental methods in dealing with the CPFF problems within the upper crust, finite element modeling has been broadly employed for solving this kind of problem over the past two decades. The main purpose of this paper is to overview recent developments and applications of finite element modeling associated with solving the CPFF problems in large length-scale geological systems of complicated geometries and complex material distributions. In particular, two kinds of commonly-used finite element modeling approaches, namely the steady-state and transient-state approaches, and their advantages/disadvantages are thoroughly presented and discussed.