Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat...Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.展开更多
In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIR...In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIRSTS)based on"cat-eye effect"was developed.The ADMWIRSTS mainly consists of both a light beam control subsystem and an infrared search and track subsystem.The light beam control subsystem uses an integrated opto-mechanical two-dimensional pointing mirror to realize the control function of the azimuth and pitch directions of the system,which can cover the whole airspace range of 360°×90°.The infrared search and track subsystem uses two mid-wave infrared cooled 640×512 focal plane detectors for co-aperture beam expanding,infrared and illumination laser beam combining,infrared search,and two-stage track opto-mechanical design.In this work,the system integration design and structural finite-element analysis were conducted,the search imaging and two-stage track imaging for external scenes were performed,and the active-detection technologies were experimentally verified in the laboratory.The experimental investigation results show that the system can realize the infrared search and track imaging,and the accurate identification and positioning of the mid-wave infrared guidance,or infrared detection system through the echo of the illumination laser.The aforementioned work has important technical significance and practical application value for the development of compactly-integrated high-precision infrared search and track,and laser suppression system,and has broad application prospects in the protection of equipment,assets and infrastructures.展开更多
基金2016 Australian Studies Program jointly funded by the Foundation for the Australian Studies in China and the Australia-China Council(ABN 23 151 021 037)
基金Project financially supported by the Second Stage of Brain Korea 21 Projects and Changwon National University,Korea
文摘Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.
基金Supported by the Fundamental Scientific Research Plan of China(JCKY2021130B033)。
文摘In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIRSTS)based on"cat-eye effect"was developed.The ADMWIRSTS mainly consists of both a light beam control subsystem and an infrared search and track subsystem.The light beam control subsystem uses an integrated opto-mechanical two-dimensional pointing mirror to realize the control function of the azimuth and pitch directions of the system,which can cover the whole airspace range of 360°×90°.The infrared search and track subsystem uses two mid-wave infrared cooled 640×512 focal plane detectors for co-aperture beam expanding,infrared and illumination laser beam combining,infrared search,and two-stage track opto-mechanical design.In this work,the system integration design and structural finite-element analysis were conducted,the search imaging and two-stage track imaging for external scenes were performed,and the active-detection technologies were experimentally verified in the laboratory.The experimental investigation results show that the system can realize the infrared search and track imaging,and the accurate identification and positioning of the mid-wave infrared guidance,or infrared detection system through the echo of the illumination laser.The aforementioned work has important technical significance and practical application value for the development of compactly-integrated high-precision infrared search and track,and laser suppression system,and has broad application prospects in the protection of equipment,assets and infrastructures.