A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for represent...A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness.展开更多
The C-C method was adopted to analyze the nonlinear characteristics of masseter electromyography (EMG) signals and the chaotic degree by the largest Lyapunov exponent (LLE) of different genders and sides. First, t...The C-C method was adopted to analyze the nonlinear characteristics of masseter electromyography (EMG) signals and the chaotic degree by the largest Lyapunov exponent (LLE) of different genders and sides. First, the embedding dimension and the delay time were obtained through this method, then the phase space was reconstructed to resume the chaotie attractor and determine the LLE. The result shows that the trajectory of attractor is denser than Chen's attractor, and the LLE is positive, which means that not only the signal has the character of chaos, but also the chaotic degree of masseter EMG is relatively high. According to the value of the LLE, the chaotic degree of men's masseter EMG is higher than that of women's; when the dentition is normal, the chaotic degree of two sides is almost the same. Then, a conclusion can be deduced that if the LLE of both sides are in great difference, the unilateral mastication is likely to exist, which means that the nonlinear characteristics of masseter EMG can be applied to predict the unilateral mastication.展开更多
基金Project(50808025) supported by the National Natural Science Foundation of ChinaProject(20090162110057) supported by the Doctoral Fund of Ministry of Education,China
文摘A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness.
文摘The C-C method was adopted to analyze the nonlinear characteristics of masseter electromyography (EMG) signals and the chaotic degree by the largest Lyapunov exponent (LLE) of different genders and sides. First, the embedding dimension and the delay time were obtained through this method, then the phase space was reconstructed to resume the chaotie attractor and determine the LLE. The result shows that the trajectory of attractor is denser than Chen's attractor, and the LLE is positive, which means that not only the signal has the character of chaos, but also the chaotic degree of masseter EMG is relatively high. According to the value of the LLE, the chaotic degree of men's masseter EMG is higher than that of women's; when the dentition is normal, the chaotic degree of two sides is almost the same. Then, a conclusion can be deduced that if the LLE of both sides are in great difference, the unilateral mastication is likely to exist, which means that the nonlinear characteristics of masseter EMG can be applied to predict the unilateral mastication.