为研究车用质子交换膜燃料电池的预测和健康管理问题,提出了一种以相对功率损耗率为健康指标、灰狼优化(grey wolf optimizer,GWO)算法与径向基(radial basis function,RBF)神经网络相结合的方法(GWO-RBF),对车用质子交换膜燃料电池的...为研究车用质子交换膜燃料电池的预测和健康管理问题,提出了一种以相对功率损耗率为健康指标、灰狼优化(grey wolf optimizer,GWO)算法与径向基(radial basis function,RBF)神经网络相结合的方法(GWO-RBF),对车用质子交换膜燃料电池的剩余使用寿命进行预测。首先,通过对初始时刻燃料电池极化曲线的分析,构建以相对功率损耗率为健康指标的计算方法,并采用灰色关联度分析方法验证其可行性。然后,应用GWO算法优化的RBF神经网络预测车用质子交换膜燃料电池的剩余使用寿命。最后,采用两组数据集对提出的方法进行了验证分析。结果表明:与其他方法相比,提出的基于GWO-RBF方法的平均绝对百分比误差、均方根误差最小,决定系数最大,相对误差小于1%。可见本文方法能够以较少的数据集、较高的精度预测车用质子交换膜燃料电池的剩余使用寿命。展开更多
文摘为研究车用质子交换膜燃料电池的预测和健康管理问题,提出了一种以相对功率损耗率为健康指标、灰狼优化(grey wolf optimizer,GWO)算法与径向基(radial basis function,RBF)神经网络相结合的方法(GWO-RBF),对车用质子交换膜燃料电池的剩余使用寿命进行预测。首先,通过对初始时刻燃料电池极化曲线的分析,构建以相对功率损耗率为健康指标的计算方法,并采用灰色关联度分析方法验证其可行性。然后,应用GWO算法优化的RBF神经网络预测车用质子交换膜燃料电池的剩余使用寿命。最后,采用两组数据集对提出的方法进行了验证分析。结果表明:与其他方法相比,提出的基于GWO-RBF方法的平均绝对百分比误差、均方根误差最小,决定系数最大,相对误差小于1%。可见本文方法能够以较少的数据集、较高的精度预测车用质子交换膜燃料电池的剩余使用寿命。