采用相图计算(CALPHAD:Calculation of phase diagrams)方法对Zr-X(X=Li,Na,K,Sc,Hf)5个二元体系进行了相图热力学研究.基于实验数据,通过热力学优化计算获得了一套描述液相及(αZr),(βZr),(Li),(Na),(K),(αSc),(βSc),(αHf)和(βHf...采用相图计算(CALPHAD:Calculation of phase diagrams)方法对Zr-X(X=Li,Na,K,Sc,Hf)5个二元体系进行了相图热力学研究.基于实验数据,通过热力学优化计算获得了一套描述液相及(αZr),(βZr),(Li),(Na),(K),(αSc),(βSc),(αHf)和(βHf)相的热力学参数.Zr-Li,Zr-Na和Zr-K体系中的气相视为理想气体.与实验相图数据对比发现,本文获得的热力学参数能够准确地描述实验相平衡数据.展开更多
Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave met...Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is △GBCC-HCP>△GFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.展开更多
文摘采用相图计算(CALPHAD:Calculation of phase diagrams)方法对Zr-X(X=Li,Na,K,Sc,Hf)5个二元体系进行了相图热力学研究.基于实验数据,通过热力学优化计算获得了一套描述液相及(αZr),(βZr),(Li),(Na),(K),(αSc),(βSc),(αHf)和(βHf)相的热力学参数.Zr-Li,Zr-Na和Zr-K体系中的气相视为理想气体.与实验相图数据对比发现,本文获得的热力学参数能够准确地描述实验相平衡数据.
基金Project(20070533118) supported by the Doctoral Discipline Foundation of Ministry of Education of ChinaProjects(50471058, 50271085) supported by the National Natural Science Foundation of ChinaProject supported by the Postdoctoral Foundation of Central South University, China
文摘Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is △GBCC-HCP>△GFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.