Eight Complexes were synthesized with propane diamine and cobalt with four different ions under the reaction of liquid-solid and solid-gas, respectively. After reacted with O2, they are characterized with elemental an...Eight Complexes were synthesized with propane diamine and cobalt with four different ions under the reaction of liquid-solid and solid-gas, respectively. After reacted with O2, they are characterized with elemental analysis, IR, XRD, thermogravimetric analysis. Their ability to bind O2 was studied with gas volume try. As a result, it is found that the ability to bind O2 was related to cobalt salt with different ions, and the types of synthesize methods due to different r eaction mechanism.展开更多
Vanadium sesquioxide (V2O3) nanopowder was successfully prepared by the solid phase reaction of themixture of vanadyl hydroxide (VO(OH)2) and ammonium chloride (NH4Cl) at 500 ℃. The as-obtained samples were character...Vanadium sesquioxide (V2O3) nanopowder was successfully prepared by the solid phase reaction of themixture of vanadyl hydroxide (VO(OH)2) and ammonium chloride (NH4Cl) at 500 ℃. The as-obtained samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). V2O3 nanoparticles were well dispersed and displayed sphere-like particles with diameters in the range of 30~50 nm.展开更多
W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and m...W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and morphology of Li4Ti4.psW0.05Ol2. W-doping does not change the phase composition and particle morphology, while remarkably improves its cycling stability at high charge/discharge rate. Li4Ti4.95W0.05O12 exhibits an excellent rate capability with a reversible capacity of 131.2 mA.h/g at 10C and even 118.6 mA.h/g at 20C. The substitution of W for Ti site can enhance the electronic conductivity of Li4TisO12 via the generation of mixing Ti4+/Ti3+, which indicates that Li4Ti4.psW0.05O12 is promising as a high rate anode for the lithium-ion batteries.展开更多
The synthesis and transport properties of the Li6La3BiSnO1212 solid electrolyte by a solid-state reaction were reported. The condition to synthesize the Li6La3BiSnO1212 is 785 °C for 36 h in air. The refined latt...The synthesis and transport properties of the Li6La3BiSnO1212 solid electrolyte by a solid-state reaction were reported. The condition to synthesize the Li6La3BiSnO1212 is 785 °C for 36 h in air. The refined lattice constant of Li6La3 BiSnO1212 is 13.007A. Qualitative phase analysis by X-ray powder diffraction patterns combined with the Rietveld method reveals garnet type compounds as major phases. The Li-ion conductivity of the prepared Li6La3BiSnO12 is 0.85×10^-4 S/cm at 22 °C, which is comparable with that of the Li5La3Bi2O12. The Li6La3BiSnO1212 compounds are chemically stable against Li CoO2 which is widely used as cathode material up to 700 °C but not against the Li Mn2O4 if the temperature is higher than 550 °C. The Li6La3 BiSnO1212 exhibits higher chemical stability than Li5La3Bi2O12, which is due to Sn substitution for Bi.展开更多
文摘Eight Complexes were synthesized with propane diamine and cobalt with four different ions under the reaction of liquid-solid and solid-gas, respectively. After reacted with O2, they are characterized with elemental analysis, IR, XRD, thermogravimetric analysis. Their ability to bind O2 was studied with gas volume try. As a result, it is found that the ability to bind O2 was related to cobalt salt with different ions, and the types of synthesize methods due to different r eaction mechanism.
文摘Vanadium sesquioxide (V2O3) nanopowder was successfully prepared by the solid phase reaction of themixture of vanadyl hydroxide (VO(OH)2) and ammonium chloride (NH4Cl) at 500 ℃. The as-obtained samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). V2O3 nanoparticles were well dispersed and displayed sphere-like particles with diameters in the range of 30~50 nm.
文摘W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and morphology of Li4Ti4.psW0.05Ol2. W-doping does not change the phase composition and particle morphology, while remarkably improves its cycling stability at high charge/discharge rate. Li4Ti4.95W0.05O12 exhibits an excellent rate capability with a reversible capacity of 131.2 mA.h/g at 10C and even 118.6 mA.h/g at 20C. The substitution of W for Ti site can enhance the electronic conductivity of Li4TisO12 via the generation of mixing Ti4+/Ti3+, which indicates that Li4Ti4.psW0.05O12 is promising as a high rate anode for the lithium-ion batteries.
基金Project(51372278)supported by the National Natural Science Foundation of ChinaProject(2010RS4015)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2014ejing004)supported by the Hunan Intellectual Property Bureau,ChinaProject(CSUZC2014020)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The synthesis and transport properties of the Li6La3BiSnO1212 solid electrolyte by a solid-state reaction were reported. The condition to synthesize the Li6La3BiSnO1212 is 785 °C for 36 h in air. The refined lattice constant of Li6La3 BiSnO1212 is 13.007A. Qualitative phase analysis by X-ray powder diffraction patterns combined with the Rietveld method reveals garnet type compounds as major phases. The Li-ion conductivity of the prepared Li6La3BiSnO12 is 0.85×10^-4 S/cm at 22 °C, which is comparable with that of the Li5La3Bi2O12. The Li6La3BiSnO1212 compounds are chemically stable against Li CoO2 which is widely used as cathode material up to 700 °C but not against the Li Mn2O4 if the temperature is higher than 550 °C. The Li6La3 BiSnO1212 exhibits higher chemical stability than Li5La3Bi2O12, which is due to Sn substitution for Bi.