期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积-反卷积网络的正交人脸特征学习算法
被引量:
5
1
作者
孙文赟
宋昱
陈昌盛
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2020年第5期474-481,共8页
身份特征与表情特征是人脸图像分析中的两组重要特征,传统的有监督正交人脸特征学习(supervised orthogonal facial feature learning,SOFFL)算法虽然能够在给定表情和身份标签时学习这一对特征,但因数据要求较高令其应用受限.提出一种...
身份特征与表情特征是人脸图像分析中的两组重要特征,传统的有监督正交人脸特征学习(supervised orthogonal facial feature learning,SOFFL)算法虽然能够在给定表情和身份标签时学习这一对特征,但因数据要求较高令其应用受限.提出一种低数据要求的无监督正交人脸特征学习(unsupervised orthogonal facial feature learning,UOFFL)算法,通过提取正交人脸特征的统一框架,假设人脸图像空间中仅有身份和表情变化,使用重构损失、分类损失和相关性最小化损失的组合,采用深度卷积-反卷积神经网络,从已对齐的人脸图像中联合学习,提取身份和表情特征.其中,分类损失用于学习表情特征;相关性最小化损失用于提高身份特征和表情特征之间的独立性;重构损失用于确保两组特征组合的信息完整性.在大规模合成人脸表情数据集(large-scale synthesized facial expression dataset,LSFED)和受限的Radboud人脸数据集(Radboud faces dataset,RaFD)上进行验证,将所学身份特征空间中的欧氏距离用于人脸验证任务,结果表明,算法性能接近联合贝叶斯等有监督人脸识别方法.UOFFL算法可在身份标签缺失的条件下,仅使用表情特征学得身份特征.相比改进前的SOFFL算法,该方法缓解了对身份标签的依赖,适用场合更广.
展开更多
关键词
人工智能
计算机神经网络
深度学习
人脸表情识别
人脸图像分析
正交人脸特征
重构
损失
分类
损失
相关性最小损失
在线阅读
下载PDF
职称材料
题名
基于卷积-反卷积网络的正交人脸特征学习算法
被引量:
5
1
作者
孙文赟
宋昱
陈昌盛
机构
深圳市媒体信息内容安全重点实验室
出处
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2020年第5期474-481,共8页
基金
国家自然科学基金资助项目(61902250)
广东省自然科学基金资助项目(2020A1515010563)
深圳市科技计划基础研究资助项目(JCYJ20180305124550725)
文摘
身份特征与表情特征是人脸图像分析中的两组重要特征,传统的有监督正交人脸特征学习(supervised orthogonal facial feature learning,SOFFL)算法虽然能够在给定表情和身份标签时学习这一对特征,但因数据要求较高令其应用受限.提出一种低数据要求的无监督正交人脸特征学习(unsupervised orthogonal facial feature learning,UOFFL)算法,通过提取正交人脸特征的统一框架,假设人脸图像空间中仅有身份和表情变化,使用重构损失、分类损失和相关性最小化损失的组合,采用深度卷积-反卷积神经网络,从已对齐的人脸图像中联合学习,提取身份和表情特征.其中,分类损失用于学习表情特征;相关性最小化损失用于提高身份特征和表情特征之间的独立性;重构损失用于确保两组特征组合的信息完整性.在大规模合成人脸表情数据集(large-scale synthesized facial expression dataset,LSFED)和受限的Radboud人脸数据集(Radboud faces dataset,RaFD)上进行验证,将所学身份特征空间中的欧氏距离用于人脸验证任务,结果表明,算法性能接近联合贝叶斯等有监督人脸识别方法.UOFFL算法可在身份标签缺失的条件下,仅使用表情特征学得身份特征.相比改进前的SOFFL算法,该方法缓解了对身份标签的依赖,适用场合更广.
关键词
人工智能
计算机神经网络
深度学习
人脸表情识别
人脸图像分析
正交人脸特征
重构
损失
分类
损失
相关性最小损失
Keywords
artificial intelligence
computer neural network
deep learning
facial expression recognition
facial image analysis
orthogonal facial feature
reconstruction loss
classification loss
correlation minimization loss
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积-反卷积网络的正交人脸特征学习算法
孙文赟
宋昱
陈昌盛
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2020
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部