针对传统谐波责任划分方法需采用专门同步设备监测数据,且需基于等值电路模型划分谐波责任,工程应用较为复杂等不足,采用现有谐波监测装置非同步测量数据,提出一种综合考虑了数据非同步性、场景划分和数据相关性的谐波责任划分方法。首...针对传统谐波责任划分方法需采用专门同步设备监测数据,且需基于等值电路模型划分谐波责任,工程应用较为复杂等不足,采用现有谐波监测装置非同步测量数据,提出一种综合考虑了数据非同步性、场景划分和数据相关性的谐波责任划分方法。首先,对原始非同步监测数据集采用分段聚合近似算法进行降噪预处理,利用形状动态时间规整算法(shape dynamic time warping,ShapeDTW)实现数据匹配对齐;然后,利用点排序识别聚类结构的聚类算法(ordering points to identify the clustering structure,OPTICS)划分场景以处理电力系统中因负荷投切和无功补偿装置切换等情况导致的谐波责任变化;最后,基于相关性分析构建场景谐波责任和总谐波责任指标,在指标构建的过程中引入了场景时长占比这一因素以得到更加科学合理的总谐波责任值。通过仿真验证和电网实例验证,该方法能基于现有非同步性监测数据实现各用户合理时间尺度动态谐波责任划分,可为工程上的快速谐波责任划分提供一定的新思路和新方法。展开更多
文摘为了评价PIC猪的胴体性状和肉质性状,试验屠宰了健康的PIC猪9头,测定了其胴体性状、肉质性状和肌肉成分等相关指标,并分析了各性状间的相关性。结果表明,宰前活重为123.78 kg的PIC猪,屠宰率为75.58%,瘦肉率为60.8%,平均背膘厚25.62 mm,眼肌面积45.95 cm 2,滴水损失2.14%,嫩度43.56N,肌内脂肪含量2.23%,总氨基酸含量20.3%,饱和脂肪酸含量41.54%,总不饱和脂肪酸含量58.44%。性状间相关性分析表明,PIC猪的宰前活重与屠宰率呈显著正相关(P<0.05),肌内脂肪与MUFA呈极显著正相关(P<0.01),与PUFA呈极显著负相关(P<0.01),与水分呈显著负相关(P<0.05)。肌内脂肪与水分间的相关系数为-0.718,二者间线性模型Y=-0.9985x+75.299,决定系数R^(2)为0.5153。
文摘针对传统谐波责任划分方法需采用专门同步设备监测数据,且需基于等值电路模型划分谐波责任,工程应用较为复杂等不足,采用现有谐波监测装置非同步测量数据,提出一种综合考虑了数据非同步性、场景划分和数据相关性的谐波责任划分方法。首先,对原始非同步监测数据集采用分段聚合近似算法进行降噪预处理,利用形状动态时间规整算法(shape dynamic time warping,ShapeDTW)实现数据匹配对齐;然后,利用点排序识别聚类结构的聚类算法(ordering points to identify the clustering structure,OPTICS)划分场景以处理电力系统中因负荷投切和无功补偿装置切换等情况导致的谐波责任变化;最后,基于相关性分析构建场景谐波责任和总谐波责任指标,在指标构建的过程中引入了场景时长占比这一因素以得到更加科学合理的总谐波责任值。通过仿真验证和电网实例验证,该方法能基于现有非同步性监测数据实现各用户合理时间尺度动态谐波责任划分,可为工程上的快速谐波责任划分提供一定的新思路和新方法。