为提高目标形变、遮挡、相似干扰以及视野超出等复杂场景的目标跟踪性能,提出一种复杂场景单目标跟踪算法。基于Staple算法研究二维高斯函数像素权重赋予问题,优化颜色直方图统计,增强目标与背景区分度。引入基于峰值旁瓣比(Peak Side L...为提高目标形变、遮挡、相似干扰以及视野超出等复杂场景的目标跟踪性能,提出一种复杂场景单目标跟踪算法。基于Staple算法研究二维高斯函数像素权重赋予问题,优化颜色直方图统计,增强目标与背景区分度。引入基于峰值旁瓣比(Peak Side Lobe Ratio,PSR)的HOG特征、颜色特征的自适应融合机制,合理选择融合系数,确保混合特征更加可靠。分析目标区域中心与上一帧目标中心距离,结合最大混合响应计算最佳中心位置,解决相似目标干扰问题。采用混合响应、HOG特征、平均峰值相关能量(Average Peak-to-Correlation Energy,APCE)判定目标丢失、遮挡情况,保持目标框位置,实现目标的及时重新跟踪。采用结合之前帧和当前帧信息的模板更新策略,进一步提升跟踪精度,并在OTB100数据集中涉及形变、遮挡、视野超出3个属性视频上测试。实验结果表明,改进算法在整体和特定属性(形变、遮挡、出视野)的成功率及形变属性的精确度上,较Staple算法分别提升了1.8%,3.3%,2%和9%;在VOT16数据集上,改进算法在整体和遮挡属性上,重叠度较Staple提升了0.0222和0.0196,满足复杂的特定场景下的目标跟踪需求。展开更多
随着电网结构的日益复杂,变电站关键设备的运行状态对电网安全稳定运行的影响逐渐增强。针对变电站复杂背景下多目标识别以及相似目标识别困难的问题,该文提出了一种基于注意力机制与特征平衡的YOLO-AFB(you only look once-attention a...随着电网结构的日益复杂,变电站关键设备的运行状态对电网安全稳定运行的影响逐渐增强。针对变电站复杂背景下多目标识别以及相似目标识别困难的问题,该文提出了一种基于注意力机制与特征平衡的YOLO-AFB(you only look once-attention and feature balance)网络。通过在Darknet-53网络中引入混合注意力加强对变电站相关目标的特征提取能力,在特征融合模块中加入反卷积来实现特征图的自适应上采样,提出特征平衡策略来缓解特征图语义信息差别,提高特征融合的质量。在含有9类目标的变电站数据集上进行测试,所提模型整体识别精度达到了83.02%,与经典目标检测网络对比,各类目标的检测精度均有大幅提升。同时互感器等相似目标的识别也得到明显改善,验证了特征平衡的策略可以很好地解决变电站中相似目标识别难的问题。展开更多
文摘针对在相似目标检测问题中,以YOLOv5为代表的一步法漏检错检率高、以Faster R-CNN为代表的两步法检测速度慢的问题,提出了一种改进的YOLOv5-ResNet相似目标检测网络模型。该模型以YOLOv5框架为基础,借鉴了两步法的优点。在边框生成方面,改进了特征融合结构,强化了模型的特征提取能力,降低了总体漏检、误检率。在类别预测方面,引入SE(squeeze and excitation)模块,在通道方向上施加注意力机制,降低网络检测时的计算量,并保持了较高的准确率。在斯坦福宠物狗数据集和自制音符卡片数据集上的实验结果表明,本文提出的相似目标快速检测模型不仅在识别精度方面略高于Faster R-CNN,而在速度方面仅次于YOLOv5,检测帧率约为YOLOv5的72%,能够满足相似目标检测的实时需要。
文摘随着电网结构的日益复杂,变电站关键设备的运行状态对电网安全稳定运行的影响逐渐增强。针对变电站复杂背景下多目标识别以及相似目标识别困难的问题,该文提出了一种基于注意力机制与特征平衡的YOLO-AFB(you only look once-attention and feature balance)网络。通过在Darknet-53网络中引入混合注意力加强对变电站相关目标的特征提取能力,在特征融合模块中加入反卷积来实现特征图的自适应上采样,提出特征平衡策略来缓解特征图语义信息差别,提高特征融合的质量。在含有9类目标的变电站数据集上进行测试,所提模型整体识别精度达到了83.02%,与经典目标检测网络对比,各类目标的检测精度均有大幅提升。同时互感器等相似目标的识别也得到明显改善,验证了特征平衡的策略可以很好地解决变电站中相似目标识别难的问题。