陆上风电全直流系统能有效解决谐波谐振、无功传输等问题,是未来风力发电系统的发展方向,其低电压穿越(low voltage ride through,LVRT)能力是系统稳定运行的保障。文中基于系统拓扑及其运行控制策略,剖析网侧电压跌落时聚集在陆上风电...陆上风电全直流系统能有效解决谐波谐振、无功传输等问题,是未来风力发电系统的发展方向,其低电压穿越(low voltage ride through,LVRT)能力是系统稳定运行的保障。文中基于系统拓扑及其运行控制策略,剖析网侧电压跌落时聚集在陆上风电全直流发电系统直流环节的盈余功率,分析常规LVRT策略在风电全直流系统中的适用性。考虑电网对风电系统储能配置的要求,兼顾风电机组自启动特性提出利用电池储能存储低电压故障下直流母线的盈余功率实现LVRT的控制策略。在PSCAD/EMTDC仿真平台搭建陆上风电全直流发电系统模型,对所提策略进行仿真验证。结果表明,所提控制策略能够提升风电全直流发电系统的LVRT能力,促进直流母线电压的快速恢复;电池储能在故障期间吸收盈余能量,在风电机组自启动期间提供能量,提高了能量与储能的利用率。展开更多
在配电网发生故障的情况下,具有低电压穿越(Low Voltage Ride Through,LVRT)能力的光伏电源(PV)的输出电流与PV容量、故障类型以及故障位置等因素密切相关,这给配电网电流保护的整定带来了很大困难。分析了PV的低电压穿越运行特性及控...在配电网发生故障的情况下,具有低电压穿越(Low Voltage Ride Through,LVRT)能力的光伏电源(PV)的输出电流与PV容量、故障类型以及故障位置等因素密切相关,这给配电网电流保护的整定带来了很大困难。分析了PV的低电压穿越运行特性及控制策略,给出了含PV配电网的故障分析方法。并结合含PV配电网故障时短路电流的特点,分析了现有配电网自适应电流速断保护存在的问题,针对PV只输出正序电流这一特点,提出了一种适用于多个PV接入的配电网自适应正序电流速断保护。利用PSCAD建立了一个10 k V配电系统模型,仿真验证了该保护的正确性。展开更多
文摘陆上风电全直流系统能有效解决谐波谐振、无功传输等问题,是未来风力发电系统的发展方向,其低电压穿越(low voltage ride through,LVRT)能力是系统稳定运行的保障。文中基于系统拓扑及其运行控制策略,剖析网侧电压跌落时聚集在陆上风电全直流发电系统直流环节的盈余功率,分析常规LVRT策略在风电全直流系统中的适用性。考虑电网对风电系统储能配置的要求,兼顾风电机组自启动特性提出利用电池储能存储低电压故障下直流母线的盈余功率实现LVRT的控制策略。在PSCAD/EMTDC仿真平台搭建陆上风电全直流发电系统模型,对所提策略进行仿真验证。结果表明,所提控制策略能够提升风电全直流发电系统的LVRT能力,促进直流母线电压的快速恢复;电池储能在故障期间吸收盈余能量,在风电机组自启动期间提供能量,提高了能量与储能的利用率。
文摘在配电网发生故障的情况下,具有低电压穿越(Low Voltage Ride Through,LVRT)能力的光伏电源(PV)的输出电流与PV容量、故障类型以及故障位置等因素密切相关,这给配电网电流保护的整定带来了很大困难。分析了PV的低电压穿越运行特性及控制策略,给出了含PV配电网的故障分析方法。并结合含PV配电网故障时短路电流的特点,分析了现有配电网自适应电流速断保护存在的问题,针对PV只输出正序电流这一特点,提出了一种适用于多个PV接入的配电网自适应正序电流速断保护。利用PSCAD建立了一个10 k V配电系统模型,仿真验证了该保护的正确性。