为满足现代电子测量和无线电通信领域对激励源的需求,采用DDS(Direct Digital Synthesizer)芯片AD9854ASVZ设计一款高频率高精度信号发生器。ARM Cortex-M3内核的STM32F103VE芯片作为系统的MCU(Microcontroller Unit);在MDK-ARM平台下用...为满足现代电子测量和无线电通信领域对激励源的需求,采用DDS(Direct Digital Synthesizer)芯片AD9854ASVZ设计一款高频率高精度信号发生器。ARM Cortex-M3内核的STM32F103VE芯片作为系统的MCU(Microcontroller Unit);在MDK-ARM平台下用C语言开发主监控程序和信号产生程序;利用Python工具在PC(Personal Computer)端编写人机交互界面,通过串口实现PC与MCU之间通信;设计低通滤波电路和多级放大电路对产生的信号进行噪声(杂散)抑制和幅度控制。测试结果表明,该信号发生器输出信号失真小,精度高,频率范围宽,具备较好的稳定性。输出正弦波、方波的频率范围为DC^150 MHz,频率漂移100 PPB(Part Per Billion),频率分辨率1μHz,输出信号幅度峰峰值可在10 m V^20 V范围内,以10 m V步进调节。技术指标满足大部分外场实验和工业应用的需求。展开更多
为了实现直接数字频率合成信号的产生,文中基于直接数字频率合成器(Direct Digital Frequency Synthesis,DDS)的工作原理、基本结构、特性分析、输出频谱,采用了MATLAB语言进行编程,结合交互式图形用户界面(Graphic User Interface,简称...为了实现直接数字频率合成信号的产生,文中基于直接数字频率合成器(Direct Digital Frequency Synthesis,DDS)的工作原理、基本结构、特性分析、输出频谱,采用了MATLAB语言进行编程,结合交互式图形用户界面(Graphic User Interface,简称GUI),调整参数k(1≤k≤100)可以产生1~100 Hz任意频率的时域和频域波形,能够产生直接数字频率合成信号,达到设计要求。展开更多
采用模拟电路设计的信号源存在频率精度不高、调试与维修不方便、工作不够稳定以及直接升级困难等缺点。文章提出了利用直接数字频率合成技术(Direction Digital Frequency Synthesis Technology简称DDS)设计信号源,分别介绍了基于CPLD...采用模拟电路设计的信号源存在频率精度不高、调试与维修不方便、工作不够稳定以及直接升级困难等缺点。文章提出了利用直接数字频率合成技术(Direction Digital Frequency Synthesis Technology简称DDS)设计信号源,分别介绍了基于CPLD、单片机、DDS芯片和简单数字电路等4种信号源设计方法。4种方法都包含了信号数据表、读取数据表的电路、D/A电路和低通滤波器电路。更改数据表的数据就可以改变信号类型,用不同速率读取数据表中的数据就可以得到不同的信号频率。这2种值的改变都可以通过软件实现,实现了信号源设计的软件化。改进设计后的信号源不仅有很高的频率精度,而且电路结构简单、电路工作稳定、维修方便。展开更多
文摘为满足现代电子测量和无线电通信领域对激励源的需求,采用DDS(Direct Digital Synthesizer)芯片AD9854ASVZ设计一款高频率高精度信号发生器。ARM Cortex-M3内核的STM32F103VE芯片作为系统的MCU(Microcontroller Unit);在MDK-ARM平台下用C语言开发主监控程序和信号产生程序;利用Python工具在PC(Personal Computer)端编写人机交互界面,通过串口实现PC与MCU之间通信;设计低通滤波电路和多级放大电路对产生的信号进行噪声(杂散)抑制和幅度控制。测试结果表明,该信号发生器输出信号失真小,精度高,频率范围宽,具备较好的稳定性。输出正弦波、方波的频率范围为DC^150 MHz,频率漂移100 PPB(Part Per Billion),频率分辨率1μHz,输出信号幅度峰峰值可在10 m V^20 V范围内,以10 m V步进调节。技术指标满足大部分外场实验和工业应用的需求。
文摘为了实现直接数字频率合成信号的产生,文中基于直接数字频率合成器(Direct Digital Frequency Synthesis,DDS)的工作原理、基本结构、特性分析、输出频谱,采用了MATLAB语言进行编程,结合交互式图形用户界面(Graphic User Interface,简称GUI),调整参数k(1≤k≤100)可以产生1~100 Hz任意频率的时域和频域波形,能够产生直接数字频率合成信号,达到设计要求。
文摘采用模拟电路设计的信号源存在频率精度不高、调试与维修不方便、工作不够稳定以及直接升级困难等缺点。文章提出了利用直接数字频率合成技术(Direction Digital Frequency Synthesis Technology简称DDS)设计信号源,分别介绍了基于CPLD、单片机、DDS芯片和简单数字电路等4种信号源设计方法。4种方法都包含了信号数据表、读取数据表的电路、D/A电路和低通滤波器电路。更改数据表的数据就可以改变信号类型,用不同速率读取数据表中的数据就可以得到不同的信号频率。这2种值的改变都可以通过软件实现,实现了信号源设计的软件化。改进设计后的信号源不仅有很高的频率精度,而且电路结构简单、电路工作稳定、维修方便。