直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive...直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive direct fast iterative filtering,ADFIF)方法,该方法基于瞬时频率波动能量差准则,自适应确定DFIF算法外循环每层迭代筛分过程中最优滤波区间调整参数。ADFIF方法能够自适应地将任意非线性和非平稳信号分解为若干个瞬时频率具有物理意义的近似窄带信号和一个趋势项之和。通过仿真信号和滚动轴承故障信号分析,将所提ADFIF方法与原DFIF、自适应局部迭代滤波、变分模态分解、经验模态分解等方法进行对比,结果表明,所提ADFF方法在抑制模态混叠和抗噪性方面具有一定的优势,且能提取出滚动轴承更多故障特征信息。展开更多
该文基于快速卷积算法,提出一种适用于线性相位FIR滤波器的并行结构。该结构采用快速卷积算法减少子滤波器个数,同时让尽可能多的子滤波器具有对称系数,然后利用系数对称的特性减少子滤波器模块中的乘法器数量。对于具有对称系数的FIR...该文基于快速卷积算法,提出一种适用于线性相位FIR滤波器的并行结构。该结构采用快速卷积算法减少子滤波器个数,同时让尽可能多的子滤波器具有对称系数,然后利用系数对称的特性减少子滤波器模块中的乘法器数量。对于具有对称系数的FIR滤波器,提出的并行结构能够比已有的并行FIR结构节省大量的硬件资源,尤其当滤波器的抽头数较大时效果更明显。具体地,对一个4并行144抽头的FIR滤波器,提出的结构比改进的快速FIR算法(Fast FIR Algorithm,FFA)结构节省36个乘法器(14.3%),23个加法器(6.6%)和35个延时单元(11.0%)。展开更多
针对S变换在电能质量扰动检测中存在计算量过大,时频分辨率低,电能质量扰动数据集常具备类别不平衡的问题,提出一种基于改进Kaiser窗快速S变换(modified Kaiser window fast S-transform,FMKST)和轻梯度提升机(light gradient boosting ...针对S变换在电能质量扰动检测中存在计算量过大,时频分辨率低,电能质量扰动数据集常具备类别不平衡的问题,提出一种基于改进Kaiser窗快速S变换(modified Kaiser window fast S-transform,FMKST)和轻梯度提升机(light gradient boosting machine,LightGBM)的电能质量扰动识别与分类新方法。首先通过快速傅里叶变换得到采样信号频谱;然后利用迭代循环滤波区间定位算法确定扰动频率区间;再根据扰动频率区间所处频段确定窗宽调节因子并对相应区间进行变换;最后从采样信号的FMKST模时频矩阵中提取特征向量并构建改进LightGBM分类器进行分类。仿真与实验结果表明,提出的方法具有更高的识别准确率与更快的诊断速度,适用于海量电能质量扰动数据的快速识别与分类。展开更多
针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故...针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。展开更多
文摘直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive direct fast iterative filtering,ADFIF)方法,该方法基于瞬时频率波动能量差准则,自适应确定DFIF算法外循环每层迭代筛分过程中最优滤波区间调整参数。ADFIF方法能够自适应地将任意非线性和非平稳信号分解为若干个瞬时频率具有物理意义的近似窄带信号和一个趋势项之和。通过仿真信号和滚动轴承故障信号分析,将所提ADFIF方法与原DFIF、自适应局部迭代滤波、变分模态分解、经验模态分解等方法进行对比,结果表明,所提ADFF方法在抑制模态混叠和抗噪性方面具有一定的优势,且能提取出滚动轴承更多故障特征信息。
文摘该文基于快速卷积算法,提出一种适用于线性相位FIR滤波器的并行结构。该结构采用快速卷积算法减少子滤波器个数,同时让尽可能多的子滤波器具有对称系数,然后利用系数对称的特性减少子滤波器模块中的乘法器数量。对于具有对称系数的FIR滤波器,提出的并行结构能够比已有的并行FIR结构节省大量的硬件资源,尤其当滤波器的抽头数较大时效果更明显。具体地,对一个4并行144抽头的FIR滤波器,提出的结构比改进的快速FIR算法(Fast FIR Algorithm,FFA)结构节省36个乘法器(14.3%),23个加法器(6.6%)和35个延时单元(11.0%)。
文摘针对S变换在电能质量扰动检测中存在计算量过大,时频分辨率低,电能质量扰动数据集常具备类别不平衡的问题,提出一种基于改进Kaiser窗快速S变换(modified Kaiser window fast S-transform,FMKST)和轻梯度提升机(light gradient boosting machine,LightGBM)的电能质量扰动识别与分类新方法。首先通过快速傅里叶变换得到采样信号频谱;然后利用迭代循环滤波区间定位算法确定扰动频率区间;再根据扰动频率区间所处频段确定窗宽调节因子并对相应区间进行变换;最后从采样信号的FMKST模时频矩阵中提取特征向量并构建改进LightGBM分类器进行分类。仿真与实验结果表明,提出的方法具有更高的识别准确率与更快的诊断速度,适用于海量电能质量扰动数据的快速识别与分类。
文摘针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。