有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,...有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,在基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)基础上进行改进,种群进化过程中自适应调整交叉与变异的概率以提高个体的质量,最终得到一组可供决策者使用的最优解集。实验结果表明:与其他多目标进化算法相比,该算法能得到适应度更高且分布性良好的结果,能够为防空导弹武器目标分配问题提供可行方案。展开更多
传统的Pareto支配关系在高维目标空间存在固有缺陷,而一些改进的支配方法在平衡高维目标解群的收敛性与多样性上尚有提升空间.基于此,提出一种参考向量关联区域(小生境)自动缩减的支配关系A2R(dominance relation based on the Automati...传统的Pareto支配关系在高维目标空间存在固有缺陷,而一些改进的支配方法在平衡高维目标解群的收敛性与多样性上尚有提升空间.基于此,提出一种参考向量关联区域(小生境)自动缩减的支配关系A2R(dominance relation based on the Automatically reduced region Associated with the Reference vector).该支配方法在进化全过程中逐代缩减小生境规模,从而实现收敛性与多样性自动平衡,而且不引入额外参数.另外,提出利用基于L_(p)-范式(p=1/M,M为目标数)的拥挤距离度量高维目标解群的多样性.将上述两种策略嵌入到经典的NSGA-II(Nondominated Sorting Genetic Algorithm II)框架,设计一种基于A2R支配关系的高维多目标进化算法MaOEA/A2R(Many-Objective Evolutionary Algorithm base on A2R).该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ(benchmark MOP proposed by Deb,Thiele,Lau-manns,and Zitzler)和WFG(benchmark MOP pro-posed by Walking Fish Group)基准测试问题上进行IGD(Inverted Generational Distance)和HV(Hyper Volume)性能测试.结果表明,MaOEA/A2R算法总体上具有较好的收敛性和多样性.由此表明,MaOEA/A2R是一种颇具前景的高维多目标进化算法.展开更多
为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D...为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D的多目标环境经济调度算法。该算法首先采用Tchebycheff法将整个EED Pareto最优前沿的逼近问题分解为一定数量的单目标优化子问题,然后利用差分进化同时求解这些子问题,并在算法中加入约束处理及归一化操作,以获得最优的带约束EED问题的调度方案。最后,应用模糊集理论为决策者提供最优折中解。对IEEE 30节点测试系统进行仿真计算,并与其它智能优化算法的调度方案对比。结果表明,该算法有效可行,且具有很好的收敛速度和求解精度。展开更多
现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Archive-Elite Learning ...现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Archive-Elite Learning and Opposition-based Learning,AOL-MOEA)以解决困难的多目标优化问题.AOLMOEA算法利用档案精英学习算子增强算法全局搜索能力,促进算法较快收敛;运用动态一般反向学习机制代替变异算子以增加种群逃逸局部极值的机会;使用3-点最短路径方法维持解群的多样性.AOL-MOEA算法与另外5种代表性多目标优化算法在12个基准多目标测试函数上进行性能比较,实验结果表明:AOL-MOEA算法在收敛性、多样性和稳定性等方面均优于或部分优于其他的对比算法.展开更多
文摘有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,在基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)基础上进行改进,种群进化过程中自适应调整交叉与变异的概率以提高个体的质量,最终得到一组可供决策者使用的最优解集。实验结果表明:与其他多目标进化算法相比,该算法能得到适应度更高且分布性良好的结果,能够为防空导弹武器目标分配问题提供可行方案。
文摘传统的Pareto支配关系在高维目标空间存在固有缺陷,而一些改进的支配方法在平衡高维目标解群的收敛性与多样性上尚有提升空间.基于此,提出一种参考向量关联区域(小生境)自动缩减的支配关系A2R(dominance relation based on the Automatically reduced region Associated with the Reference vector).该支配方法在进化全过程中逐代缩减小生境规模,从而实现收敛性与多样性自动平衡,而且不引入额外参数.另外,提出利用基于L_(p)-范式(p=1/M,M为目标数)的拥挤距离度量高维目标解群的多样性.将上述两种策略嵌入到经典的NSGA-II(Nondominated Sorting Genetic Algorithm II)框架,设计一种基于A2R支配关系的高维多目标进化算法MaOEA/A2R(Many-Objective Evolutionary Algorithm base on A2R).该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ(benchmark MOP proposed by Deb,Thiele,Lau-manns,and Zitzler)和WFG(benchmark MOP pro-posed by Walking Fish Group)基准测试问题上进行IGD(Inverted Generational Distance)和HV(Hyper Volume)性能测试.结果表明,MaOEA/A2R算法总体上具有较好的收敛性和多样性.由此表明,MaOEA/A2R是一种颇具前景的高维多目标进化算法.
基金湖南省自然科学基金(the Natural Science Foundation of Hunan Province of China under Grant No.05JJ30125)湖南省教育厅重点科技项目资助(the Key Technology Project of Department of Ministry of Hunan Province+2 种基金China)教育部留学回国人员科研启动基金(The Project-sponsored by SRF for ROCSSEM(教外司留[2005]546号))。
文摘为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D的多目标环境经济调度算法。该算法首先采用Tchebycheff法将整个EED Pareto最优前沿的逼近问题分解为一定数量的单目标优化子问题,然后利用差分进化同时求解这些子问题,并在算法中加入约束处理及归一化操作,以获得最优的带约束EED问题的调度方案。最后,应用模糊集理论为决策者提供最优折中解。对IEEE 30节点测试系统进行仿真计算,并与其它智能优化算法的调度方案对比。结果表明,该算法有效可行,且具有很好的收敛速度和求解精度。
基金Supported by the National Natural Science Foundation of China under Grant No.60435010(国家自然科学基金)the National Grand Fundamental Research 973 Program of China under Grant No.2003CB317004(国家重点基础研究发展规划(973)the Natural Science Foundation of Beijing of China under Grant No.4052025(北京市自然科学基金)
文摘现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Archive-Elite Learning and Opposition-based Learning,AOL-MOEA)以解决困难的多目标优化问题.AOLMOEA算法利用档案精英学习算子增强算法全局搜索能力,促进算法较快收敛;运用动态一般反向学习机制代替变异算子以增加种群逃逸局部极值的机会;使用3-点最短路径方法维持解群的多样性.AOL-MOEA算法与另外5种代表性多目标优化算法在12个基准多目标测试函数上进行性能比较,实验结果表明:AOL-MOEA算法在收敛性、多样性和稳定性等方面均优于或部分优于其他的对比算法.