期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进高分辨率神经网络的多目标行人跟踪
被引量:
4
1
作者
张红颖
贺鹏艺
彭晓雯
《光学精密工程》
EI
CAS
CSCD
北大核心
2023年第6期860-871,共12页
针对行人多目标跟踪过程中目标被遮挡时产生的检测、跟踪失败问题,提出了一种改进型高分辨率神经网络作为检测网络。首先,为了增强网络对于行人目标的初始特征提取能力,在高分辨率神经网络的基础上,对网络的主干部分引入二代瓶颈残差块...
针对行人多目标跟踪过程中目标被遮挡时产生的检测、跟踪失败问题,提出了一种改进型高分辨率神经网络作为检测网络。首先,为了增强网络对于行人目标的初始特征提取能力,在高分辨率神经网络的基础上,对网络的主干部分引入二代瓶颈残差块结构,提升感受野和特征表达力;其次,设计了添加二层高效通道注意力模块的残差检测块架构,并通过该架构替换了原有网络在多尺度信息交换阶段中的残差检测块,以提高了整个网络系统的测试性能;最后,通过选择适当的参数对网络进行了全面地训练,并通过多个测试集对算法测试。测试结果显示,本文算法相较于FairMOT在2DMOT15,MOT17,MOT20数据集上的跟踪准确度分别提升0.1%,1.6%,0.8%。本文算法可以良好地应用在目标较多且遮挡面积较大的特殊情景,同时对于较长时间视频序列的追踪稳定性也大大提高。
展开更多
关键词
目标身份切换
高分辨率神经网络
高效通道注意力模块
二代瓶颈残差块
FairMOT
在线阅读
下载PDF
职称材料
基于卷积注意力模块和无锚框检测网络的行人跟踪算法
被引量:
9
2
作者
张红颖
贺鹏艺
《电子与信息学报》
EI
CSCD
北大核心
2022年第9期3299-3307,共9页
针对多目标跟踪过程中遮挡严重时的目标身份切换、跟踪轨迹中断等问题,该文提出一种基于卷积注意力模块(CBAM)和无锚框(anchor-free)检测网络的行人跟踪算法。首先,在高分辨率特征提取网络HrnetV2的基础上,对stem阶段引入注意力机制,以...
针对多目标跟踪过程中遮挡严重时的目标身份切换、跟踪轨迹中断等问题,该文提出一种基于卷积注意力模块(CBAM)和无锚框(anchor-free)检测网络的行人跟踪算法。首先,在高分辨率特征提取网络HrnetV2的基础上,对stem阶段引入注意力机制,以提取更具表达力的特征,从而加强对重识别分支的训练;其次,为了提高算法的运算速度,使检测和重识别分支共享特征权重且并行运行,同时减少头网络的卷积通道数以降低参数运算量;最后,设定合适的参数对网络进行充分的训练,并使用多个测试集对算法进行测试。实验结果表明,该文算法相较于FairMOT在2DMOT15,MOT17,MOT20数据集上的精确度分别提升1.1%,1.1%,0.2%,速度分别提升0.82,0.88,0.41 fps;相较于其他几种主流算法拥有最少的目标身份切换次数。该文算法能够更好地适用于遮挡严重的场景,实时性也有所提高。
展开更多
关键词
目标身份切换
高分辨率特征提取网络
卷积注意力模块
无锚框检测网络
头网络
FairMOT
在线阅读
下载PDF
职称材料
题名
基于改进高分辨率神经网络的多目标行人跟踪
被引量:
4
1
作者
张红颖
贺鹏艺
彭晓雯
机构
中国民航大学电子信息与自动化学院
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2023年第6期860-871,共12页
基金
国家重点研发计划资助项目(No.2018YFB1601200)。
文摘
针对行人多目标跟踪过程中目标被遮挡时产生的检测、跟踪失败问题,提出了一种改进型高分辨率神经网络作为检测网络。首先,为了增强网络对于行人目标的初始特征提取能力,在高分辨率神经网络的基础上,对网络的主干部分引入二代瓶颈残差块结构,提升感受野和特征表达力;其次,设计了添加二层高效通道注意力模块的残差检测块架构,并通过该架构替换了原有网络在多尺度信息交换阶段中的残差检测块,以提高了整个网络系统的测试性能;最后,通过选择适当的参数对网络进行了全面地训练,并通过多个测试集对算法测试。测试结果显示,本文算法相较于FairMOT在2DMOT15,MOT17,MOT20数据集上的跟踪准确度分别提升0.1%,1.6%,0.8%。本文算法可以良好地应用在目标较多且遮挡面积较大的特殊情景,同时对于较长时间视频序列的追踪稳定性也大大提高。
关键词
目标身份切换
高分辨率神经网络
高效通道注意力模块
二代瓶颈残差块
FairMOT
Keywords
ID switch
high-resolution feature extraction network
Efficient Channel Attention(ECA)
Bottle2neck
FairMOT
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于卷积注意力模块和无锚框检测网络的行人跟踪算法
被引量:
9
2
作者
张红颖
贺鹏艺
机构
中国民航大学电子信息与自动化学院
出处
《电子与信息学报》
EI
CSCD
北大核心
2022年第9期3299-3307,共9页
基金
国家重点研发计划(2018YFB1601200)
天津市研究生科研创新项目(2020YJSZXS14)
四川省青年科技创新研究团队专项计划(2019JDTD0001)。
文摘
针对多目标跟踪过程中遮挡严重时的目标身份切换、跟踪轨迹中断等问题,该文提出一种基于卷积注意力模块(CBAM)和无锚框(anchor-free)检测网络的行人跟踪算法。首先,在高分辨率特征提取网络HrnetV2的基础上,对stem阶段引入注意力机制,以提取更具表达力的特征,从而加强对重识别分支的训练;其次,为了提高算法的运算速度,使检测和重识别分支共享特征权重且并行运行,同时减少头网络的卷积通道数以降低参数运算量;最后,设定合适的参数对网络进行充分的训练,并使用多个测试集对算法进行测试。实验结果表明,该文算法相较于FairMOT在2DMOT15,MOT17,MOT20数据集上的精确度分别提升1.1%,1.1%,0.2%,速度分别提升0.82,0.88,0.41 fps;相较于其他几种主流算法拥有最少的目标身份切换次数。该文算法能够更好地适用于遮挡严重的场景,实时性也有所提高。
关键词
目标身份切换
高分辨率特征提取网络
卷积注意力模块
无锚框检测网络
头网络
FairMOT
Keywords
IDentity switch(IDs)
High-resolution feature extraction network
Convolutional Block Attention Module(CBAM)
Anchor-free detection netword
Head network
Fair MOT
分类号
TN911.73 [电子电信—通信与信息系统]
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进高分辨率神经网络的多目标行人跟踪
张红颖
贺鹏艺
彭晓雯
《光学精密工程》
EI
CAS
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
2
基于卷积注意力模块和无锚框检测网络的行人跟踪算法
张红颖
贺鹏艺
《电子与信息学报》
EI
CSCD
北大核心
2022
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部