In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections...In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.展开更多
The difficulty of multiple targets tracking is how to quickly fulfill the target matching from one flame image to another and fix the position of the target. In order to accurately choose target feature information fo...The difficulty of multiple targets tracking is how to quickly fulfill the target matching from one flame image to another and fix the position of the target. In order to accurately choose target feature information for reliable matching, simplify operations under the reliable precondition, and realize precise moving objects tracking, an approach based on Kalman prediction and feature matching was proposed. The position of the target in next frame image was predicted by Kalman, and then the moving objects of two adjacent frames were matched by the centroid and area methods. When occlusion occurs, the best matching result was found to realize tracking by matching matrix algorithm. The simulation results show that the proposed method can achieve multiple targets tracking accurately and in real-time under complicated motion movements.展开更多
Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method ...Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.展开更多
A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the...A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.展开更多
Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multi...Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.展开更多
基金Project(61101186)supported by the National Natural Science Foundation of China
文摘In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.
基金Project(61172089) supported by the National Natural Science Foundation of China
文摘The difficulty of multiple targets tracking is how to quickly fulfill the target matching from one flame image to another and fix the position of the target. In order to accurately choose target feature information for reliable matching, simplify operations under the reliable precondition, and realize precise moving objects tracking, an approach based on Kalman prediction and feature matching was proposed. The position of the target in next frame image was predicted by Kalman, and then the moving objects of two adjacent frames were matched by the centroid and area methods. When occlusion occurs, the best matching result was found to realize tracking by matching matrix algorithm. The simulation results show that the proposed method can achieve multiple targets tracking accurately and in real-time under complicated motion movements.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation, ChinaProject(NCET-06-0686) supported by Program for New Century Excellent Talents in UniversityProject(IRT0661) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.