针对冲击脉冲超宽带雷达(Impulse Radio Ultra-Wideband Radar,IR-UWBR)在小样本条件及探测场景复杂等挑战下导致目标识别能力不足的问题,提出基于距离-多普勒图与自适应特征选择网络(Range-Doppler Map and Adaptive Feature Selection...针对冲击脉冲超宽带雷达(Impulse Radio Ultra-Wideband Radar,IR-UWBR)在小样本条件及探测场景复杂等挑战下导致目标识别能力不足的问题,提出基于距离-多普勒图与自适应特征选择网络(Range-Doppler Map and Adaptive Feature Selection Network,RDM-AFSN)的运动目标识别方法。在分析IR-UWBR在慢时间维接收回波信号规律的基础上,建立了IR-UWBR多普勒信息提取模型。同时,深入分析运动目标距离-多普勒图由于背景信息复杂、目标种类多导致图像空间特征差异大的特性,构建基于坐标软阈值去噪模块与空间自适应下采样层的RDM-AFSN目标识别模型。实验结果表明,所提模型能够有效提高小样本条件下对运动目标的分类能力,对不同场景下的同类目标均有较好的识别效果,与常用于地面目标识别的卷积-循环深度网络和图像编码深度网络相比,所提出的RDM-AFSN在识别准确率上分别提高了3.64%和7.53%。展开更多
文摘针对目前智能机器人领域中,利用多帧连续视觉和触觉信息时,对时空信息和模态间的异构信息处理不足的问题,提出了一种结合时空注意力的视触融合目标识别方法。该方法利用Swin Transformer模块从视觉和触觉图像中分别提取特征,减轻模态间的异构性;使用基于注意力瓶颈机制的时空Transformer模块,实现视觉和触觉特征信息的时空交互和跨模态交互;通过多头自注意力融合模块,实现视触觉特征中信息的自适应聚合,提高了算法对目标识别的准确性;通过全连接层获得目标识别的结果。该模型在The Touch and Go公共数据集上的精确率和F1分数分别为98.38%和96.83%,比效果最好的对比模型提高了0.90和0.63个百分点。此外,消融实验也验证了提出的各个模块的有效性。
文摘针对冲击脉冲超宽带雷达(Impulse Radio Ultra-Wideband Radar,IR-UWBR)在小样本条件及探测场景复杂等挑战下导致目标识别能力不足的问题,提出基于距离-多普勒图与自适应特征选择网络(Range-Doppler Map and Adaptive Feature Selection Network,RDM-AFSN)的运动目标识别方法。在分析IR-UWBR在慢时间维接收回波信号规律的基础上,建立了IR-UWBR多普勒信息提取模型。同时,深入分析运动目标距离-多普勒图由于背景信息复杂、目标种类多导致图像空间特征差异大的特性,构建基于坐标软阈值去噪模块与空间自适应下采样层的RDM-AFSN目标识别模型。实验结果表明,所提模型能够有效提高小样本条件下对运动目标的分类能力,对不同场景下的同类目标均有较好的识别效果,与常用于地面目标识别的卷积-循环深度网络和图像编码深度网络相比,所提出的RDM-AFSN在识别准确率上分别提高了3.64%和7.53%。