车载热成像系统不依赖光源,对天气状况不敏感,探测距离远,对夜间行车有很大辅助作用,热成像自动目标检测对夜间智能驾驶具有重要意义。车载热成像系统所采集的红外图像相比可见光图像具有分辨率低,远距离小目标细节模糊的特点,且热成像...车载热成像系统不依赖光源,对天气状况不敏感,探测距离远,对夜间行车有很大辅助作用,热成像自动目标检测对夜间智能驾驶具有重要意义。车载热成像系统所采集的红外图像相比可见光图像具有分辨率低,远距离小目标细节模糊的特点,且热成像目标检测方法需考虑车辆移动速度所要求的算法实时性以及车载嵌入式平台的计算能力。针对以上问题,本文提出了一种针对热成像系统的增强型轻量级红外目标检测网络(Infrared YOLO,I-YOLO),该网络采用(Tiny you only look once,Tiny-YOLO V3)的基础结构,根据红外图像特点,提取浅层卷积层特征,提高红外小目标检测能力,使用单通道卷积核,降低运算量,检测部分使用基于CenterNet结构的检测方式以降低误检测率,提高检测速度。经实际测试,Enhanced Tiny-YOLO目标检测网络在热成像目标检测方面,平均检测率可达91%,检测平均速度达到81Fps,训练模型权重96MB,适宜于车载嵌入式系统上部署。展开更多
磁脉冲压接技术成形速度快、效率高,适合高强钢和铝、碳纤维等轻质材料的连接,在飞机工业中有广泛的应用前景。但目前针对磁脉冲压接管件的在线检测方法较少,不利于该技术实现自动化生产。针对磁脉冲压接管件压接质量的在线检测需求,提...磁脉冲压接技术成形速度快、效率高,适合高强钢和铝、碳纤维等轻质材料的连接,在飞机工业中有广泛的应用前景。但目前针对磁脉冲压接管件的在线检测方法较少,不利于该技术实现自动化生产。针对磁脉冲压接管件压接质量的在线检测需求,提出了一种基于改进YOLOv4–Tiny(You only look once v4–Tiny)检测网络和自适应图像处理的视觉检测方法。引入高效通道注意力(ECA)模块对YOLOv4–Tiny检测网络进行改进,基于自适应阈值分割算法和Canny边缘检测算法设计了一种自适应的压接深度提取算法,通过模拟工业生产环境采集了一批磁脉冲压接管件图像并划分为训练集和验证集,最后使用训练数据集对算法进行训练,并在验证集上验证训练得到的检测模型。结果表明,压接区域检测模型交并比阈值取0.5时的平均精确度(AP@0.5)为100%,交并比阈值分别取0.5、0.6、0.7、0.8时的平均精确度(AP@0.5:0.8)为93.14%,单帧运行时间为1.66ms;图像处理边缘提取算法平均偏差为0.85个像素,最大偏差为2.6个像素,单帧运行时间为3.49ms;完整压接深度提取算法平均偏差为0.313个像素,均方偏差为0.115平方像素,平均偏差率为1.35%,单帧运行时间为124.49ms。该算法能够在无辅助定位的条件下准确快速地实现磁脉冲压接工件压接深度提取,部署成本低,鲁棒性高,具有较高的应用价值。展开更多
针对特定应用场景下,Tiny-YOLOv3(You Only Look Once v3)网络在嵌入式平台部署时存在资源开销大、运行速度慢的问题,文中提出了一种结合剪枝与量化的结构化压缩方案,并搭建了针对压缩后网络的卷积层加速系统。结构化压缩方案使用稀疏...针对特定应用场景下,Tiny-YOLOv3(You Only Look Once v3)网络在嵌入式平台部署时存在资源开销大、运行速度慢的问题,文中提出了一种结合剪枝与量化的结构化压缩方案,并搭建了针对压缩后网络的卷积层加速系统。结构化压缩方案使用稀疏化训练与通道剪枝来减少网络中的计算量,使用激活值定点数量化和权重二的整数次幂量化来减少网络卷积层中的参数存储量。在卷积层加速系统中,可编程逻辑部分按照并行加流水线方法设计了一个卷积层加速器核,处理系统部分负责卷积层加速系统调度。实验结果表明,Tiny-YOLOv3经过结构化压缩后的网络平均准确度为0.46,参数压缩率达到了5%。卷积层加速系统在Xilinx的ZYNQ芯片进行部署时,硬件可以稳定运行在250 MHz时钟频率下,卷积运算单元的算力为36 GOPS。此外,加速平台整体功耗为2.6 W,且硬件设计节约了硬件资源。展开更多
基于深度学习的多光谱卫星遥感图像地物分类算法通常选用RGB波段而忽略NIR等波段数据,其网络的特征提取与应用扩展能力有待提升。针对这一问题,文章提出一种基于改进YOLOv5的多光谱卫星遥感图像地物分类方法(即VN-YOLOv5-Seg网络),该方...基于深度学习的多光谱卫星遥感图像地物分类算法通常选用RGB波段而忽略NIR等波段数据,其网络的特征提取与应用扩展能力有待提升。针对这一问题,文章提出一种基于改进YOLOv5的多光谱卫星遥感图像地物分类方法(即VN-YOLOv5-Seg网络),该方法联合RGB与NIR波段数据作为输入,以YOLOv5目标检测网络作为骨干网络,使用ProtoNet网络作为分割头将目标检测转换为像素级的地物分类任务。为了验证VN-YOLOv5-Seg网络的有效性,文章选用GID-15数据集,分别使用RGB波段、RGB+NIR波段作为网络输入进行试验,并将VN-YOLOv5-Seg与其他地物分类网络的分类结果进行对比分析。试验结果表明,在RGB波段基础上引入NIR波段,平均交并比(Mean Intersection over Union,mIoU)提高了2.5%;相较于FCN分割头,mIoU提升了8.1%;相较于PSPNet、DeepLabV3和U-Net方法,mIoU分别提高了2.6%、1.2%和1.4%。试验结果充分验证了方法的有效性,以及引入更多波段信息用于地物分类的必要性。展开更多
文摘车载热成像系统不依赖光源,对天气状况不敏感,探测距离远,对夜间行车有很大辅助作用,热成像自动目标检测对夜间智能驾驶具有重要意义。车载热成像系统所采集的红外图像相比可见光图像具有分辨率低,远距离小目标细节模糊的特点,且热成像目标检测方法需考虑车辆移动速度所要求的算法实时性以及车载嵌入式平台的计算能力。针对以上问题,本文提出了一种针对热成像系统的增强型轻量级红外目标检测网络(Infrared YOLO,I-YOLO),该网络采用(Tiny you only look once,Tiny-YOLO V3)的基础结构,根据红外图像特点,提取浅层卷积层特征,提高红外小目标检测能力,使用单通道卷积核,降低运算量,检测部分使用基于CenterNet结构的检测方式以降低误检测率,提高检测速度。经实际测试,Enhanced Tiny-YOLO目标检测网络在热成像目标检测方面,平均检测率可达91%,检测平均速度达到81Fps,训练模型权重96MB,适宜于车载嵌入式系统上部署。
文摘磁脉冲压接技术成形速度快、效率高,适合高强钢和铝、碳纤维等轻质材料的连接,在飞机工业中有广泛的应用前景。但目前针对磁脉冲压接管件的在线检测方法较少,不利于该技术实现自动化生产。针对磁脉冲压接管件压接质量的在线检测需求,提出了一种基于改进YOLOv4–Tiny(You only look once v4–Tiny)检测网络和自适应图像处理的视觉检测方法。引入高效通道注意力(ECA)模块对YOLOv4–Tiny检测网络进行改进,基于自适应阈值分割算法和Canny边缘检测算法设计了一种自适应的压接深度提取算法,通过模拟工业生产环境采集了一批磁脉冲压接管件图像并划分为训练集和验证集,最后使用训练数据集对算法进行训练,并在验证集上验证训练得到的检测模型。结果表明,压接区域检测模型交并比阈值取0.5时的平均精确度(AP@0.5)为100%,交并比阈值分别取0.5、0.6、0.7、0.8时的平均精确度(AP@0.5:0.8)为93.14%,单帧运行时间为1.66ms;图像处理边缘提取算法平均偏差为0.85个像素,最大偏差为2.6个像素,单帧运行时间为3.49ms;完整压接深度提取算法平均偏差为0.313个像素,均方偏差为0.115平方像素,平均偏差率为1.35%,单帧运行时间为124.49ms。该算法能够在无辅助定位的条件下准确快速地实现磁脉冲压接工件压接深度提取,部署成本低,鲁棒性高,具有较高的应用价值。
文摘针对特定应用场景下,Tiny-YOLOv3(You Only Look Once v3)网络在嵌入式平台部署时存在资源开销大、运行速度慢的问题,文中提出了一种结合剪枝与量化的结构化压缩方案,并搭建了针对压缩后网络的卷积层加速系统。结构化压缩方案使用稀疏化训练与通道剪枝来减少网络中的计算量,使用激活值定点数量化和权重二的整数次幂量化来减少网络卷积层中的参数存储量。在卷积层加速系统中,可编程逻辑部分按照并行加流水线方法设计了一个卷积层加速器核,处理系统部分负责卷积层加速系统调度。实验结果表明,Tiny-YOLOv3经过结构化压缩后的网络平均准确度为0.46,参数压缩率达到了5%。卷积层加速系统在Xilinx的ZYNQ芯片进行部署时,硬件可以稳定运行在250 MHz时钟频率下,卷积运算单元的算力为36 GOPS。此外,加速平台整体功耗为2.6 W,且硬件设计节约了硬件资源。
文摘基于深度学习的多光谱卫星遥感图像地物分类算法通常选用RGB波段而忽略NIR等波段数据,其网络的特征提取与应用扩展能力有待提升。针对这一问题,文章提出一种基于改进YOLOv5的多光谱卫星遥感图像地物分类方法(即VN-YOLOv5-Seg网络),该方法联合RGB与NIR波段数据作为输入,以YOLOv5目标检测网络作为骨干网络,使用ProtoNet网络作为分割头将目标检测转换为像素级的地物分类任务。为了验证VN-YOLOv5-Seg网络的有效性,文章选用GID-15数据集,分别使用RGB波段、RGB+NIR波段作为网络输入进行试验,并将VN-YOLOv5-Seg与其他地物分类网络的分类结果进行对比分析。试验结果表明,在RGB波段基础上引入NIR波段,平均交并比(Mean Intersection over Union,mIoU)提高了2.5%;相较于FCN分割头,mIoU提升了8.1%;相较于PSPNet、DeepLabV3和U-Net方法,mIoU分别提高了2.6%、1.2%和1.4%。试验结果充分验证了方法的有效性,以及引入更多波段信息用于地物分类的必要性。