搭载在移动机器人上的同步定位与建图(simultaneous localization and mapping,SLAM)系统在实际环境中,时常因动态物体的影响而导致SLAM系统的定位精度低,严重时会使相机定位位姿失败,基于此,提出一种YOLO(you only look once)动态目标...搭载在移动机器人上的同步定位与建图(simultaneous localization and mapping,SLAM)系统在实际环境中,时常因动态物体的影响而导致SLAM系统的定位精度低,严重时会使相机定位位姿失败,基于此,提出一种YOLO(you only look once)动态目标检测网络与LK光流法相结合的RDFP-SLAM算法。该算法在视觉里程计线程中通过目标检测网络YOLOv5,对相机获取图像进行动态目标检测,再利用LK光流法判断预期动态目标检测框中真正的动态特征点并剔除,剩余静态特征点参与位姿估计及建图,最终在公开数据集TUM、KITTI和现实动态环境中进行实验测试。实验结果表明,RDFP-SLAM算法在多种视觉传感器及室内、室外不同环境的影响下,时间消耗相较于同类型的算法仍有大幅度减少,且有效提升了动态环境下特征提取的精度,该系统的鲁棒性、实时性和定位结果均得到优化。展开更多
车载热成像系统不依赖光源,对天气状况不敏感,探测距离远,对夜间行车有很大辅助作用,热成像自动目标检测对夜间智能驾驶具有重要意义。车载热成像系统所采集的红外图像相比可见光图像具有分辨率低,远距离小目标细节模糊的特点,且热成像...车载热成像系统不依赖光源,对天气状况不敏感,探测距离远,对夜间行车有很大辅助作用,热成像自动目标检测对夜间智能驾驶具有重要意义。车载热成像系统所采集的红外图像相比可见光图像具有分辨率低,远距离小目标细节模糊的特点,且热成像目标检测方法需考虑车辆移动速度所要求的算法实时性以及车载嵌入式平台的计算能力。针对以上问题,本文提出了一种针对热成像系统的增强型轻量级红外目标检测网络(Infrared YOLO,I-YOLO),该网络采用(Tiny you only look once,Tiny-YOLO V3)的基础结构,根据红外图像特点,提取浅层卷积层特征,提高红外小目标检测能力,使用单通道卷积核,降低运算量,检测部分使用基于CenterNet结构的检测方式以降低误检测率,提高检测速度。经实际测试,Enhanced Tiny-YOLO目标检测网络在热成像目标检测方面,平均检测率可达91%,检测平均速度达到81Fps,训练模型权重96MB,适宜于车载嵌入式系统上部署。展开更多
磁脉冲压接技术成形速度快、效率高,适合高强钢和铝、碳纤维等轻质材料的连接,在飞机工业中有广泛的应用前景。但目前针对磁脉冲压接管件的在线检测方法较少,不利于该技术实现自动化生产。针对磁脉冲压接管件压接质量的在线检测需求,提...磁脉冲压接技术成形速度快、效率高,适合高强钢和铝、碳纤维等轻质材料的连接,在飞机工业中有广泛的应用前景。但目前针对磁脉冲压接管件的在线检测方法较少,不利于该技术实现自动化生产。针对磁脉冲压接管件压接质量的在线检测需求,提出了一种基于改进YOLOv4–Tiny(You only look once v4–Tiny)检测网络和自适应图像处理的视觉检测方法。引入高效通道注意力(ECA)模块对YOLOv4–Tiny检测网络进行改进,基于自适应阈值分割算法和Canny边缘检测算法设计了一种自适应的压接深度提取算法,通过模拟工业生产环境采集了一批磁脉冲压接管件图像并划分为训练集和验证集,最后使用训练数据集对算法进行训练,并在验证集上验证训练得到的检测模型。结果表明,压接区域检测模型交并比阈值取0.5时的平均精确度(AP@0.5)为100%,交并比阈值分别取0.5、0.6、0.7、0.8时的平均精确度(AP@0.5:0.8)为93.14%,单帧运行时间为1.66ms;图像处理边缘提取算法平均偏差为0.85个像素,最大偏差为2.6个像素,单帧运行时间为3.49ms;完整压接深度提取算法平均偏差为0.313个像素,均方偏差为0.115平方像素,平均偏差率为1.35%,单帧运行时间为124.49ms。该算法能够在无辅助定位的条件下准确快速地实现磁脉冲压接工件压接深度提取,部署成本低,鲁棒性高,具有较高的应用价值。展开更多
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir...Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.展开更多
文摘搭载在移动机器人上的同步定位与建图(simultaneous localization and mapping,SLAM)系统在实际环境中,时常因动态物体的影响而导致SLAM系统的定位精度低,严重时会使相机定位位姿失败,基于此,提出一种YOLO(you only look once)动态目标检测网络与LK光流法相结合的RDFP-SLAM算法。该算法在视觉里程计线程中通过目标检测网络YOLOv5,对相机获取图像进行动态目标检测,再利用LK光流法判断预期动态目标检测框中真正的动态特征点并剔除,剩余静态特征点参与位姿估计及建图,最终在公开数据集TUM、KITTI和现实动态环境中进行实验测试。实验结果表明,RDFP-SLAM算法在多种视觉传感器及室内、室外不同环境的影响下,时间消耗相较于同类型的算法仍有大幅度减少,且有效提升了动态环境下特征提取的精度,该系统的鲁棒性、实时性和定位结果均得到优化。
文摘车载热成像系统不依赖光源,对天气状况不敏感,探测距离远,对夜间行车有很大辅助作用,热成像自动目标检测对夜间智能驾驶具有重要意义。车载热成像系统所采集的红外图像相比可见光图像具有分辨率低,远距离小目标细节模糊的特点,且热成像目标检测方法需考虑车辆移动速度所要求的算法实时性以及车载嵌入式平台的计算能力。针对以上问题,本文提出了一种针对热成像系统的增强型轻量级红外目标检测网络(Infrared YOLO,I-YOLO),该网络采用(Tiny you only look once,Tiny-YOLO V3)的基础结构,根据红外图像特点,提取浅层卷积层特征,提高红外小目标检测能力,使用单通道卷积核,降低运算量,检测部分使用基于CenterNet结构的检测方式以降低误检测率,提高检测速度。经实际测试,Enhanced Tiny-YOLO目标检测网络在热成像目标检测方面,平均检测率可达91%,检测平均速度达到81Fps,训练模型权重96MB,适宜于车载嵌入式系统上部署。
文摘磁脉冲压接技术成形速度快、效率高,适合高强钢和铝、碳纤维等轻质材料的连接,在飞机工业中有广泛的应用前景。但目前针对磁脉冲压接管件的在线检测方法较少,不利于该技术实现自动化生产。针对磁脉冲压接管件压接质量的在线检测需求,提出了一种基于改进YOLOv4–Tiny(You only look once v4–Tiny)检测网络和自适应图像处理的视觉检测方法。引入高效通道注意力(ECA)模块对YOLOv4–Tiny检测网络进行改进,基于自适应阈值分割算法和Canny边缘检测算法设计了一种自适应的压接深度提取算法,通过模拟工业生产环境采集了一批磁脉冲压接管件图像并划分为训练集和验证集,最后使用训练数据集对算法进行训练,并在验证集上验证训练得到的检测模型。结果表明,压接区域检测模型交并比阈值取0.5时的平均精确度(AP@0.5)为100%,交并比阈值分别取0.5、0.6、0.7、0.8时的平均精确度(AP@0.5:0.8)为93.14%,单帧运行时间为1.66ms;图像处理边缘提取算法平均偏差为0.85个像素,最大偏差为2.6个像素,单帧运行时间为3.49ms;完整压接深度提取算法平均偏差为0.313个像素,均方偏差为0.115平方像素,平均偏差率为1.35%,单帧运行时间为124.49ms。该算法能够在无辅助定位的条件下准确快速地实现磁脉冲压接工件压接深度提取,部署成本低,鲁棒性高,具有较高的应用价值。
文摘Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.