期刊文献+
共找到1,355篇文章
< 1 2 68 >
每页显示 20 50 100
基于改进YOLOv5s车载雷达图像目标检测分类方法
1
作者 李家强 汪星宇 +2 位作者 杨志豪 刘浩波 陈金立 《现代雷达》 北大核心 2025年第4期38-45,共8页
针对车载毫米波雷达图像细节模糊、目标占比小的问题,提出了一种基于YOLOv5s改进的目标检测分类网络。首先通过帧同步与最小外接矩形方法处理原始数据集,获得由相机、激光雷达联合标定的毫米波雷达距离-方位图像与标注信息;然后将YOLOv5... 针对车载毫米波雷达图像细节模糊、目标占比小的问题,提出了一种基于YOLOv5s改进的目标检测分类网络。首先通过帧同步与最小外接矩形方法处理原始数据集,获得由相机、激光雷达联合标定的毫米波雷达距离-方位图像与标注信息;然后将YOLOv5s网络的上采样模块改进为CARAFE,使网络充分融合不同尺度特征,并改进网络损失函数为综合交并比损失函数(CIoU Loss),使预测结果更加精确;最后,通过网络解耦头(Decoupled head)采用不同的分支并行处理检测与分类问题。实测数据实验处理结果表明,该方法较原始YOLOv5s网络的mAP@0.5与mAP@0.5∶0.95分别提升了3.3%和2.0%,尤其适用于小目标检测,并能同时满足检测和分类精度与实时性要求,适合部署至车载嵌入式系统中。 展开更多
关键词 目标检测分类 雷达图像 YOLOv5s网络 特征融合 解耦头
在线阅读 下载PDF
噪声标签下融合信息分类处理和多尺度嵌入图鲁棒学习的空中目标意图识别方法
2
作者 宋子豪 周焰 +3 位作者 蔡益朝 程伟 袁凯 黎慧 《电子与信息学报》 北大核心 2025年第5期1418-1433,共16页
针对传统深度学习意图识别方法难以在噪声标签存在时获得可靠模型的问题,该文提出基于信息分类处理(ICP)网络和多尺度鲁棒学习的空中目标意图识别(ATIR)方法。首先,基于空中目标属性性质,构建基于ICP的编码器,以获得更具可分性的嵌入;随... 针对传统深度学习意图识别方法难以在噪声标签存在时获得可靠模型的问题,该文提出基于信息分类处理(ICP)网络和多尺度鲁棒学习的空中目标意图识别(ATIR)方法。首先,基于空中目标属性性质,构建基于ICP的编码器,以获得更具可分性的嵌入;随后,设计了从精细到粗糙的跨尺度嵌入融合机制,利用不同尺度的目标序列,训练多个编码器来学习判别模式;同时,利用不同尺度的互补信息,以交叉教学的方式训练每个编码器,以选择小损失样本作为干净标签;对于未选定的大损失样本,基于多尺度嵌入图和说话者-倾听者标签传播算法(SLPA),使用干净样本的标签进行校正。在不同标签噪声类型、多级噪声水平的ATIR数据集上的实验结果表明,该方法的测试准确率和Macro F1分数显著优于其他基线方法,说明其具有更强的噪声标签鲁棒性。 展开更多
关键词 深度学习 空中目标意图识别 信息分类处理 噪声标签 多尺度嵌入图学习
在线阅读 下载PDF
基于目标识别和FC-GQCNN网络的机械臂抓取检测技术研究
3
作者 白杨凡 卞永明 +1 位作者 杨继翔 杨濛 《中国工程机械学报》 北大核心 2025年第2期227-232,共6页
本文提出了一种基于目标识别和全卷积抓取质量网络(FC-GQCNN)的机械臂抓取检测技术。针对传统GQCNN在实际应用中存在的计算效率低、特征重复计算等问题,提出了一种改进的FC-GQCNN。该网络通过将GQCNN的全连接层替换为1×1卷积层,使... 本文提出了一种基于目标识别和全卷积抓取质量网络(FC-GQCNN)的机械臂抓取检测技术。针对传统GQCNN在实际应用中存在的计算效率低、特征重复计算等问题,提出了一种改进的FC-GQCNN。该网络通过将GQCNN的全连接层替换为1×1卷积层,使其能够处理任意尺寸的输入图像。同时,将FC-GQCNN与YOLOv8目标识别算法相结合,构建了YOLOv8-FCGQCNN级联结构,有效解决了复杂环境下目标物体的识别和定位问题。实验结果表明:该方法在10类不同物体的抓取任务中有86%的抓取成功率,单帧平均检测时间仅为0.09 s,相比传统GQCNN的推理速度提升了22倍,显著提高了系统效率。该方法可以准确地检测感兴趣的物体的抓取位姿,并且较基准方法具有更高的可靠性。 展开更多
关键词 目标识别 抓取位姿检测 机械臂抓取系统 算法融合
在线阅读 下载PDF
基于目标检测算法YOLOv 9的滑坡隐患识别——以永新县为例
4
作者 涂梨平 陈美球 冷鹏 《测绘通报》 北大核心 2025年第6期37-42,102,共7页
滑坡灾害是最为严重的地质灾害之一,每年因滑坡灾害造成的财产损失与人员伤亡巨大,传统的基于影像人工排查工作量大、效率低。本文以永新县为研究区,首先基于高分辨率航空影像构建的207个滑坡样本,采用YOLOv 9目标检测算法构建滑坡识别... 滑坡灾害是最为严重的地质灾害之一,每年因滑坡灾害造成的财产损失与人员伤亡巨大,传统的基于影像人工排查工作量大、效率低。本文以永新县为研究区,首先基于高分辨率航空影像构建的207个滑坡样本,采用YOLOv 9目标检测算法构建滑坡识别模型,然后对模型精度进行评价,最后识别全县滑坡,并对识别的滑坡结果进行分析。结果表明,模型的精度为0.98,召回率为0.97,mAP为0.95;全县共识别滑坡312处(模型误判46处),经人工内业比对和外业调查验证,模型识别准确率为85.26%。研究表明,基于目标检测算法YOLOv9能有效识别南方地区滑坡,为大范围识别南方小规模滑坡提供了一种有效解决方法。 展开更多
关键词 滑坡 目标检测 遥感 YOLOv9 自动识别
在线阅读 下载PDF
基于FEAConv-YOLO v5的柑橘果实目标检测与识别研究
5
作者 黄蕊 李贤辉 +4 位作者 杨彦鑫 李文峰 黄兆波 魏永葵 刘宏斌 《江苏农业科学》 北大核心 2025年第5期54-61,共8页
为解决现阶段柑橘生育期信息的获取主要依靠人工观测的效率低、主观性强等问题。首先提出一种基于FEAConv-YOLO v5的柑橘果实目标检测算法,提出FEConv与FEAConv等2种特征增强卷积核,替代YOLO v5网络中卷积核,然后进行消融试验验证各改... 为解决现阶段柑橘生育期信息的获取主要依靠人工观测的效率低、主观性强等问题。首先提出一种基于FEAConv-YOLO v5的柑橘果实目标检测算法,提出FEConv与FEAConv等2种特征增强卷积核,替代YOLO v5网络中卷积核,然后进行消融试验验证各改进点的有效性,再与Faster-RCNN、YOLO v4、SSD等3个网络模型进行检测能力的对比,最后用测试集验证改进后的模型性能。其次,设计一种融合大气环境特征与果实表型特征的多模态特征果实生育期识别模型,利用ResNet18作为CNN的分类网络,提取柑橘表型特征;利用ANN作为大气环境数据特征提取网络,对FEAConv-YOLO v5所检测到的柑橘目标进行分类识别,并用混淆矩阵评价模型的分类性能。结果表明,改进后的目标检测模型收敛效果好,损失值比YOLO算法更低,消融试验中将FEConv替代主干部分卷积核后,准确率、召回率和平均精度均值分别较原模型提高0.9、0.6、0.7百分点;将FEAConv替代Neck部分卷积核后,准确率、召回率和平均精度均值分别提高1.4、1.0、1.5百分点;同时融入FEConv与FEAConv后,准确率、召回率和平均精度均值分别提高2.1、2.2、2.7百分点。在对比试验中,改进模型的平均精度均值达到了90.3%,检测速率达到了2.72帧/ms,在4个网络模型里面显示最优。其次,生育期识别模型中幼果期分类精度为96.7%,果实膨大期的分类精度为93.6%,果实成熟期的分类精度为100%,平均分类精度为96.8%。FEAConv-YOLO v5网络可以在满足时间要求的前提下,有效提升检测精度,减少小柑橘目标与遮挡目标的漏检问题。同时,多模态融合的果实目标发育期识别网络具有较高的分类精度。 展开更多
关键词 柑橘果实 目标检测 YOLO 生育期识别
在线阅读 下载PDF
基于高维特征域的低分辨雷达小微目标分类识别方法
6
作者 徐好 吴琳拥 +1 位作者 周云 任浩浩 《电子科技大学学报》 北大核心 2025年第2期203-209,共7页
低空小微目标分类问题是雷达业界的难题之一,严重影响了雷达的探测性能和系统作战指挥效能。为了准确、快速识别旋翼、固定翼等低空小微目标,提出一种基于高维特征域的低分辨雷达小微目标分类识别方法。通过提取信号层的一系列时频微观... 低空小微目标分类问题是雷达业界的难题之一,严重影响了雷达的探测性能和系统作战指挥效能。为了准确、快速识别旋翼、固定翼等低空小微目标,提出一种基于高维特征域的低分辨雷达小微目标分类识别方法。通过提取信号层的一系列时频微观特征和航迹宏观特征,对特征进行内积、幂变换等获取高维特征域,利用学习树网络建立多层级目标分类识别模型,实现低空小微目标分类标记。研究结果表明,该方法能准确、快速地实现小微目标的分类。 展开更多
关键词 小微目标 低分辨雷达 高维特征 分类识别 学习树网络
在线阅读 下载PDF
基于改进YOLOv8s的杭白菊检测与花期分类
7
作者 施国英 纪嘉鹏 +3 位作者 李天华 李文显 李扬 张观山 《农业工程学报》 北大核心 2025年第7期192-199,共8页
为精准识别与分类不同花期杭白菊,满足自动化采摘要求,该研究提出一种基于改进YOLOv8s的杭白菊检测模型-YOLOv8s-RDL。首先,该研究将颈部网络(neck)的C2f(faster implementation of CSP bottleneck with 2 convolutions)模块替换为RCS-O... 为精准识别与分类不同花期杭白菊,满足自动化采摘要求,该研究提出一种基于改进YOLOv8s的杭白菊检测模型-YOLOv8s-RDL。首先,该研究将颈部网络(neck)的C2f(faster implementation of CSP bottleneck with 2 convolutions)模块替换为RCS-OSA(one-shot aggregation of reparameterized convolution based on channel shuffle)模块,以提升骨干网络(backbone)特征融合效率;其次,将检测头更换为DyHead(dynamic head),并融合DCNv3(deformable convolutional networks v3),借助多头自注意力机制增强目标检测头的表达能力;最后,采用LAMP(layer-adaptive magnitude-based pruning)通道剪枝算法减少参数量,降低模型复杂度。试验结果表明,YOLOv8s-RDL模型在菊米和胎菊的花期分类中平均精度分别达到96.3%和97.7%,相较于YOLOv8s模型,分别提升了3.8和1.5个百分点,同时权重文件大小较YOLOv8s减小了6 MB。该研究引入TIDE(toolkit for identifying detection and segmentation errors)评估指标,结果显示,YOLOv8s-RDL模型分类错误和背景检测错误相较YOLOv8s模型分别降低0.55和1.26。该研究为杭白菊分花期自动化采摘提供了理论依据和技术支撑。 展开更多
关键词 图像识别 YOLOv8s 杭白菊检测 花期分类 LAMP
在线阅读 下载PDF
基于YOLO-Z的果实识别检测算法
8
作者 苏佳 罗都 +2 位作者 梁奔 冯康康 张建燕 《计算机工程与设计》 北大核心 2025年第5期1503-1511,共9页
针对当前果实识别中检测速度慢和遮挡目标识别准确率低的问题,提出一种YOLO-Z果实识别算法。使用YOLOv7-Tiny作为基础模型,采用轻量级的T-Net作为新的特征提取网络,减少网络层数,解决参数量过大及模型计算速度过慢的问题;使用AFPN特征... 针对当前果实识别中检测速度慢和遮挡目标识别准确率低的问题,提出一种YOLO-Z果实识别算法。使用YOLOv7-Tiny作为基础模型,采用轻量级的T-Net作为新的特征提取网络,减少网络层数,解决参数量过大及模型计算速度过慢的问题;使用AFPN特征融合结构缩减非相邻层之间较大的语义差距,增强特征信息的提取,提升模型的精度;引入损失函数Repulsion Loss,用于计算遮挡损失,解决目标遮挡问题,提高果实识别检测效果。实验结果表明,改进后的模型参数量达4.3 M,FPS为每秒200帧,mAP达到93.40%,较YOLOv7-Tiny提升0.9个百分点,参数量下降1.7 M,验证了该模型的有效性。 展开更多
关键词 目标检测 特征信息 分类回归 果实识别 目标遮挡 每秒传输帧数 平均检测精度均值
在线阅读 下载PDF
基于语义引导层次化分类的雷达地面目标HRRP识别方法 被引量:1
9
作者 李阳 刘艺辰 +1 位作者 张亮 王彦华 《信号处理》 CSCD 北大核心 2024年第1期126-137,共12页
高分辨距离像(HRRP)反映了目标空间散射结构在雷达视线方向的投影,近年来被认为是地面目标识别的重要途径。现有的HRRP识别方法采用手工特征加传统机器学习分类器,均属于平面分类方法,即采用统一标准不加区别的优选特征并单次决策最终... 高分辨距离像(HRRP)反映了目标空间散射结构在雷达视线方向的投影,近年来被认为是地面目标识别的重要途径。现有的HRRP识别方法采用手工特征加传统机器学习分类器,均属于平面分类方法,即采用统一标准不加区别的优选特征并单次决策最终类别。然而该方法在实际应用中面临种类繁杂、数据不平衡、HRRP姿态敏感性等诸多问题,难以获取最佳的应用效果。层次化方法采取分而治之思想,将一个复杂的细粒度识别任务拆解为多个简单的识别子任务。本文采用层次化识别的思路,提出了一种基于语义引导层次化分类的雷达地面目标识别方法。该方法以联合语义和数据构建的树形结构将一个复杂的细粒度识别任务拆解为多个简单的识别子任务,并针对每一个识别子任务匹配一套优选特征集和一个局部分类器。本方法在仿真数据和实测数据上完成了验证。实验结果表明了本文方法处理地面目标识别任务的有效性。 展开更多
关键词 雷达目标识别 高分辨距离像 层次化分类
在线阅读 下载PDF
基于卷积神经网络的水稻叶片病害检测与识别研究进展
10
作者 朱周华 周怡纳 王斌 《中国农机化学报》 北大核心 2025年第10期176-182,191,共8页
我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶... 我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶片病害检测效率低并且准确率不高,但随着深度学习不断发展,基于卷积神经网络的病害检测与识别已成为研究人员关注的重要课题。针对近年来使用的模型算法总结归纳数据预处理与数据增强、框架结构改进和迁移学习等改进策略,对比分析这些算法的性能及其局限性,发现多数模型存在准确率与模型参数量性能不平衡的问题。从数据集构建、模型性能平衡和泛化能力等方面展望未来的研究趋势,为以后高效检测与识别水稻叶片病害提供参考。 展开更多
关键词 水稻叶片 病害检测识别 卷积神经网络 目标检测 分类识别 改进策略
在线阅读 下载PDF
一种目标区域特征增强的SAR图像飞机目标检测与识别网络 被引量:1
11
作者 韩萍 赵涵 +2 位作者 廖大钰 彭彦文 程争 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第12期4459-4470,共12页
在合成孔径雷达(SAR)图像飞机目标检测识别中,飞机目标图像呈现离散特性以及结构之间的相似性会降低飞机检测与识别的准确率。为此该文设计了一种目标区域特征增强的SAR图像飞机目标检测与识别网络。网络由3部分组成:保护飞机特征的跨... 在合成孔径雷达(SAR)图像飞机目标检测识别中,飞机目标图像呈现离散特性以及结构之间的相似性会降低飞机检测与识别的准确率。为此该文设计了一种目标区域特征增强的SAR图像飞机目标检测与识别网络。网络由3部分组成:保护飞机特征的跨阶段部分网络(FP-CSPDarnet)、自适应特征融合的特征金字塔(FPN-A)以及目标区域散射特征提取与增强的检测头(D-Head)。FP-CSPDarnet在提取特征的同时可以有效保护SAR图像飞机特征;FPN-A采用多层次特征自适应融合、细化,来增强飞机特征;D-Head在检测前有效增强飞机可辨别特征,提升飞机检测与识别精度。利用SAR-ADRD数据集的实验结果证明了该文所提方法有效性,其平均精度相对与基线网络YOLOv5s提升了2.0%。 展开更多
关键词 合成孔径雷达 飞机目标检测识别 YOLOv5s 飞机特征保护 特征增强
在线阅读 下载PDF
结合未知类特征生成与分类得分修正的SAR目标开集识别方法
12
作者 陈健 雍奇锋 +1 位作者 杜兰 尹林伟 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期3890-3907,共18页
现有合成孔径雷达(SAR)目标识别方法大多局限于闭集假定,即认为训练模板库内训练目标类别包含全部待测目标类别,不适用于库内已知类和库外未知新类目标共存的真实开放识别环境。针对训练模板库目标类别非完备情况下的SAR目标识别问题,... 现有合成孔径雷达(SAR)目标识别方法大多局限于闭集假定,即认为训练模板库内训练目标类别包含全部待测目标类别,不适用于库内已知类和库外未知新类目标共存的真实开放识别环境。针对训练模板库目标类别非完备情况下的SAR目标识别问题,该文提出一种结合未知类特征生成与分类得分修正的SAR目标开集识别方法。该方法在利用已知类学习原型网络保证已知类识别精度的基础上结合对潜在未知类特征分布的先验认知,生成未知类特征更新网络,进一步保证特征空间中已知类、未知类特征的鉴别性。原型网络更新完成后,所提方法挑选各已知类边界特征,并计算边界特征到各自类原型的距离(极大距离),通过极值理论对各已知类极大距离进行概率拟合确定了各已知类最大分布区域。测试阶段在度量待测样本特征与各已知类原型距离预测闭集分类得分的基础上,计算了各距离在对应已知类极大距离分布上的概率,并修正闭集分类得分,实现了拒判概率的自动确定。基于MSTAR实测数据集的实验结果表明,所提方法能够有效表征真实未知类特征分布并提升网络特征空间已知类与未知类特征的鉴别性,可同时实现对库内已知类目标的准确识别和对库外未知类新目标的准确拒判。 展开更多
关键词 SAR目标识别 开集识别 未知类特征生成 极值理论 分类得分修正
在线阅读 下载PDF
人工智能目标检测技术在书画文物病害调查中的应用 被引量:1
13
作者 邓旭帅 李子璇 +1 位作者 张云春 沐蕊 《西北大学学报(自然科学版)》 北大核心 2025年第1期98-105,共8页
针对书画文物保护工作中人工病害调查和病害图绘制效率低的问题,探索了基于深度神经网络的目标检测技术识别书画病害的可行性。选择YOLOv5系列模型并根据本研究任务特点对其结构做了优化,包括FGSM算法、CmBN策略、Dropblock正则化和CIOU... 针对书画文物保护工作中人工病害调查和病害图绘制效率低的问题,探索了基于深度神经网络的目标检测技术识别书画病害的可行性。选择YOLOv5系列模型并根据本研究任务特点对其结构做了优化,包括FGSM算法、CmBN策略、Dropblock正则化和CIOU-Loss损失函数。利用博物馆馆藏书画文物素材,融合Mosaic数据增强方法进行书画文物图片的增强,设计了滑动窗口检测技术、图像逐层分析和定位裁剪技术,初步训练出了2个具备病害识别功能的模型,根据模型性能检验指标最终选择了YOLOv5x6作为本研究任务的模型。测试结果表明,该模型以较高的准确率和查全率识别出了待检测病害,用时仅为人工的千分之一。该技术的引入可极大提高文物病害识别效率,并且在病害识别过程中保持客观、稳定的标准。 展开更多
关键词 病害识别 目标检测 图像处理 YOLOv5 深度神经网络
在线阅读 下载PDF
结合知识图谱和小目标改进的RCNN电力杆塔部件识别方法 被引量:1
14
作者 张锴 贾涛 《计算机工程与应用》 北大核心 2025年第4期299-309,共11页
电力巡检是输电线路建设中的重要一环,利用无人机对电力杆塔进行巡检,并使用深度学习辅助技术人员进行智能决策,能够减少漏检率,提高巡检效率。已有方法大多无法做到对无人机影像中电力部件进行多尺度识别,或无法适应电力杆塔影像复杂... 电力巡检是输电线路建设中的重要一环,利用无人机对电力杆塔进行巡检,并使用深度学习辅助技术人员进行智能决策,能够减少漏检率,提高巡检效率。已有方法大多无法做到对无人机影像中电力部件进行多尺度识别,或无法适应电力杆塔影像复杂场景。针对以上问题,提出了一种结合知识图谱和小目标改进的RCNN电力杆塔部件识别方法。在Reasoning-RCNN模型基础上引入了空间知识图谱模块,对图像目标框间的空间关系建模;针对小目标问题构建了ROI上下文特征融合模块,并引入基于图像切分的小目标识别策略。对电力杆塔影像数据进行人工标注,并在此数据集上对模型进行实验评估。实验结果表明,所提算法实现了对复杂场景下的电力杆塔部件的多尺度识别,且精度超越了其他基准模型。 展开更多
关键词 无人机巡检 深度学习 电力杆塔部件识别 知识图谱 目标检测
在线阅读 下载PDF
SAR图像飞机目标智能检测识别技术研究进展与展望 被引量:10
15
作者 罗汝 赵凌君 +2 位作者 何奇山 计科峰 匡纲要 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期307-330,共24页
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该... 合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。 展开更多
关键词 合成孔径雷达 目标检测识别 飞机目标 深度学习 可解释人工智能
在线阅读 下载PDF
基于改进YOLO11n的复杂环境下多目标奶牛日常行为检测
16
作者 张欣冉 王新忠 +3 位作者 周奎州 蒙贺伟 彭慧杰 李亚萍 《农业工程学报》 北大核心 2025年第14期155-164,共10页
为解决养殖场圈舍内奶牛与环境背景颜色相似、奶牛受卧床和栏杆等物体遮挡以及同一个监控画面下奶牛多尺度等因素影响,易造成现有模型在提取奶牛关键行为信息时出现误检、漏检等问题,该研究提出了一种基于改进YOLO11n的复杂环境下多目... 为解决养殖场圈舍内奶牛与环境背景颜色相似、奶牛受卧床和栏杆等物体遮挡以及同一个监控画面下奶牛多尺度等因素影响,易造成现有模型在提取奶牛关键行为信息时出现误检、漏检等问题,该研究提出了一种基于改进YOLO11n的复杂环境下多目标奶牛日常行为检测方法。首先,在复杂环境背景下采集奶牛站立、行走、躺卧和采食4种基本行为图像,构建多目标奶牛行为数据集。其次,提出改进的WCG-YOLO11n模型,利用小波卷积层(WTConv)模块重新设计C3k2模块的瓶颈(botteleneck)结构,扩大图像感受野,增强对复杂背景上下文信息的特征提取能力。将级联分组注意力机制(cascaded group attention,CGA)融合至C2PSA模块,加强模型对遮挡奶牛区域特征的提取。在特征融合阶段利用重参数化泛化特征金字塔网络(efficient reparameterized generalized-FPN,Efficient RepGFPN)作为颈部网络,使其能够有效捕捉到奶牛行为图像中不同尺度的特征。最后,对改进模型WCG-YOLO11n在复杂环境下进行对比试验,结果表明,WCG-YOLO11n对多目标奶牛日常行为检测平均精度均值为95.3%,相比基线模型YOLO11n提高了2.2个百分点,与Faster R-CNN、DETR、YOLOv5s、YOLOv7、YOLOv8n和YOLOv9模型相比分别提高2.7、2.1、1.3、2.9、2.4和0.6个百分点。该模型在检测精度方面表现突出,能够有效应对不同程度的遮挡干扰,可为规模化养殖场饲养员监测奶牛行为提供一定的技术支持。 展开更多
关键词 目标检测 深度学习 模型 行为识别 WCG-YOLO11n 奶牛
在线阅读 下载PDF
基于不规则目标检测的指针式仪表读数识别方法 被引量:3
17
作者 潘宇强 姚垚 +1 位作者 张林 高俊涛 《仪表技术与传感器》 CSCD 北大核心 2024年第6期100-105,共6页
针对目前指针式仪表读数识别方法流程多、累计误差大、对倾斜图像识别效果差的问题,提出一种基于不规则目标检测网络的指针式仪表读数识别方法。首先构建校准网络结构,提取不规则目标顶点坐标,实现对图像自动进行透视变换,强化整体网络... 针对目前指针式仪表读数识别方法流程多、累计误差大、对倾斜图像识别效果差的问题,提出一种基于不规则目标检测网络的指针式仪表读数识别方法。首先构建校准网络结构,提取不规则目标顶点坐标,实现对图像自动进行透视变换,强化整体网络对倾斜样本的学习性能;随后利用卷积神经网络直接提取图像特征,实现读数信息的回归任务,减少方法步骤;最后整合模型,使倾斜校准与读数识别任务通过同一个可反向传播的神经网络学习并实现。实验表明,该方法提高了对倾斜仪表图像的读数识别精度,读数流程短、识别效率高。 展开更多
关键词 指针式仪表 不规则目标检测 透视变换 倾斜校准 读数识别
在线阅读 下载PDF
基于改进YOLOv8的无人机视角下青皮核桃目标检测
18
作者 钟天泽 云利军 +2 位作者 杨璇玺 陈载清 吴明杰 《郑州大学学报(理学版)》 北大核心 2025年第5期24-30,共7页
目前针对核桃测产的方法大多停留在利用传统的统计学模型上,其准确率几乎无法保证。因此,以青皮核桃为例,建立无人机航拍视角下的核桃图像数据集,首次将coordinate attention(CA)机制嵌入YOLOv8模型中,利用改进后的YOLOv8-CA模型算法对... 目前针对核桃测产的方法大多停留在利用传统的统计学模型上,其准确率几乎无法保证。因此,以青皮核桃为例,建立无人机航拍视角下的核桃图像数据集,首次将coordinate attention(CA)机制嵌入YOLOv8模型中,利用改进后的YOLOv8-CA模型算法对青皮核桃进行目标检测。实验结果表明,改进后的新模型YOLOv8-CA与原始YOLOv8和YOLOv5相比,在mAP值上分别提高了0.004和0.051,在Recall值上分别提高了0.019和0.089。 展开更多
关键词 目标识别 无人机视角 机器视觉 果实测产 核桃检测
在线阅读 下载PDF
基于改进Yolov8的红外弱小目标识别算法
19
作者 李雪峰 李宁 +2 位作者 吴迪 于祥跃 郭永强 《激光与红外》 北大核心 2025年第5期789-797,共9页
为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三... 为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三重注意力机制,为特征融合网络内部添加新的小目标检测层、检测头,以及在特征提取网络的空间池化金字塔内结合大内核卷积,针对红外弱小目标的成像特性进行改进。算法在真实红外图像数据上进行验证,实验结果表明,UT-Yolov8算法在保持高检测速度的同时,有效提高了网络对于红外弱小目标识别精度,平均精度均值mAP@0.5达到了95.9%。 展开更多
关键词 红外弱小目标识别 Yolov8 大内核卷积 三重注意力机制 目标检测
在线阅读 下载PDF
联合边界生成的多目标学习的嵌套命名实体识别
20
作者 徐章杰 陈艳平 +2 位作者 扈应 黄瑞章 秦永彬 《计算机应用》 北大核心 2025年第7期2229-2236,共8页
命名实体识别(NER)旨在从非结构化文本中识别预定义的实体类型。基于跨度的NER方法通过枚举所有可能的跨度进行分类,然而文本中相邻的跨度共享上下文语义,会导致跨度之间的边界语义信息模糊,从而使模型难以获取跨度间的依赖信息。针对... 命名实体识别(NER)旨在从非结构化文本中识别预定义的实体类型。基于跨度的NER方法通过枚举所有可能的跨度进行分类,然而文本中相邻的跨度共享上下文语义,会导致跨度之间的边界语义信息模糊,从而使模型难以获取跨度间的依赖信息。针对跨度间边界语义信息模糊的问题,提出一种联合边界生成的多目标学习NER模型。该模型通过联合NER任务和边界生成任务,以多目标学习的方式进行共同训练。其中:使用边界生成任务作为辅助任务引导模型网络关注跨度的边界信息,以增强跨度的边界语义,进而提升NER的性能。在ACE2004、ACE2005和GENIA数据集上进行测试,所提模型的F1值分别达到了87.83%、86.90%和81.65%,实验结果充分验证了该模型在不同数据集上的有效性,也进一步验证了该模型在命名实体识别任务中的优越性能。 展开更多
关键词 命名实体识别 跨度分类 目标学习 边界生成 神经网络
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部