为精准识别与分类不同花期杭白菊,满足自动化采摘要求,该研究提出一种基于改进YOLOv8s的杭白菊检测模型-YOLOv8s-RDL。首先,该研究将颈部网络(neck)的C2f(faster implementation of CSP bottleneck with 2 convolutions)模块替换为RCS-O...为精准识别与分类不同花期杭白菊,满足自动化采摘要求,该研究提出一种基于改进YOLOv8s的杭白菊检测模型-YOLOv8s-RDL。首先,该研究将颈部网络(neck)的C2f(faster implementation of CSP bottleneck with 2 convolutions)模块替换为RCS-OSA(one-shot aggregation of reparameterized convolution based on channel shuffle)模块,以提升骨干网络(backbone)特征融合效率;其次,将检测头更换为DyHead(dynamic head),并融合DCNv3(deformable convolutional networks v3),借助多头自注意力机制增强目标检测头的表达能力;最后,采用LAMP(layer-adaptive magnitude-based pruning)通道剪枝算法减少参数量,降低模型复杂度。试验结果表明,YOLOv8s-RDL模型在菊米和胎菊的花期分类中平均精度分别达到96.3%和97.7%,相较于YOLOv8s模型,分别提升了3.8和1.5个百分点,同时权重文件大小较YOLOv8s减小了6 MB。该研究引入TIDE(toolkit for identifying detection and segmentation errors)评估指标,结果显示,YOLOv8s-RDL模型分类错误和背景检测错误相较YOLOv8s模型分别降低0.55和1.26。该研究为杭白菊分花期自动化采摘提供了理论依据和技术支撑。展开更多
为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三...为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三重注意力机制,为特征融合网络内部添加新的小目标检测层、检测头,以及在特征提取网络的空间池化金字塔内结合大内核卷积,针对红外弱小目标的成像特性进行改进。算法在真实红外图像数据上进行验证,实验结果表明,UT-Yolov8算法在保持高检测速度的同时,有效提高了网络对于红外弱小目标识别精度,平均精度均值mAP@0.5达到了95.9%。展开更多
文摘为精准识别与分类不同花期杭白菊,满足自动化采摘要求,该研究提出一种基于改进YOLOv8s的杭白菊检测模型-YOLOv8s-RDL。首先,该研究将颈部网络(neck)的C2f(faster implementation of CSP bottleneck with 2 convolutions)模块替换为RCS-OSA(one-shot aggregation of reparameterized convolution based on channel shuffle)模块,以提升骨干网络(backbone)特征融合效率;其次,将检测头更换为DyHead(dynamic head),并融合DCNv3(deformable convolutional networks v3),借助多头自注意力机制增强目标检测头的表达能力;最后,采用LAMP(layer-adaptive magnitude-based pruning)通道剪枝算法减少参数量,降低模型复杂度。试验结果表明,YOLOv8s-RDL模型在菊米和胎菊的花期分类中平均精度分别达到96.3%和97.7%,相较于YOLOv8s模型,分别提升了3.8和1.5个百分点,同时权重文件大小较YOLOv8s减小了6 MB。该研究引入TIDE(toolkit for identifying detection and segmentation errors)评估指标,结果显示,YOLOv8s-RDL模型分类错误和背景检测错误相较YOLOv8s模型分别降低0.55和1.26。该研究为杭白菊分花期自动化采摘提供了理论依据和技术支撑。
文摘为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三重注意力机制,为特征融合网络内部添加新的小目标检测层、检测头,以及在特征提取网络的空间池化金字塔内结合大内核卷积,针对红外弱小目标的成像特性进行改进。算法在真实红外图像数据上进行验证,实验结果表明,UT-Yolov8算法在保持高检测速度的同时,有效提高了网络对于红外弱小目标识别精度,平均精度均值mAP@0.5达到了95.9%。