期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLO v2的车辆实时检测算法
被引量:
7
1
作者
卞山峰
张庆辉
《电子质量》
2019年第10期19-22,共4页
针对传统的车辆检测算法存在鲁棒性差、检测速度慢和准确率低等问题,提出基于改进YOLO v2模型的车辆实时检测算法。通过目标框维度聚类、网络结构改进以及输入图像多尺度变换等方法对YOLO v2算法进行改进,对比传统的Faster RCNN检测算法...
针对传统的车辆检测算法存在鲁棒性差、检测速度慢和准确率低等问题,提出基于改进YOLO v2模型的车辆实时检测算法。通过目标框维度聚类、网络结构改进以及输入图像多尺度变换等方法对YOLO v2算法进行改进,对比传统的Faster RCNN检测算法,改进的算法提升了检测速度和准确度,将帧速度提升到了45f/s,精确度提升到了97.21%,在车辆实时检测方面效果更好。
展开更多
关键词
车辆实时检测
YOLO
V2
FASTER
RCNN
目标框维度聚类
在线阅读
下载PDF
职称材料
题名
基于改进YOLO v2的车辆实时检测算法
被引量:
7
1
作者
卞山峰
张庆辉
机构
河南工业大学信息科学与工程学院
出处
《电子质量》
2019年第10期19-22,共4页
文摘
针对传统的车辆检测算法存在鲁棒性差、检测速度慢和准确率低等问题,提出基于改进YOLO v2模型的车辆实时检测算法。通过目标框维度聚类、网络结构改进以及输入图像多尺度变换等方法对YOLO v2算法进行改进,对比传统的Faster RCNN检测算法,改进的算法提升了检测速度和准确度,将帧速度提升到了45f/s,精确度提升到了97.21%,在车辆实时检测方面效果更好。
关键词
车辆实时检测
YOLO
V2
FASTER
RCNN
目标框维度聚类
Keywords
Real-time vehicle detection
YOLO v2
Faster RCNN
Target box dimension clustering
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLO v2的车辆实时检测算法
卞山峰
张庆辉
《电子质量》
2019
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部