目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSF...目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSFDP)的目标分群方法。该方法将目标分群转化为数据集聚类问题,通过计算目标间的流形距离来衡量目标间的相似度,然后在流形距离的基础上利用CFSFDP算法搜索聚类中心,指定其余数据点类别。仿真实验以人工数据集和UCI数据集为对象,验证了M-CFSFDP算法聚类效果优于CFSFDP算法;同时将M-CFSFDP应用在战场目标静态与动态分群中,仿真结果表明了该方法的正确性与有效性。展开更多
针对传统聚类算法对流形分布数据聚类效果差,且实时性不高的缺点,提出改进基于cell的密度聚类(Cell-Based density Spatial Clustering of Applications with Noise, CBSCAN)算法解决实时空战目标分群问题。通过分析空战态势参数,建立...针对传统聚类算法对流形分布数据聚类效果差,且实时性不高的缺点,提出改进基于cell的密度聚类(Cell-Based density Spatial Clustering of Applications with Noise, CBSCAN)算法解决实时空战目标分群问题。通过分析空战态势参数,建立了空战目标分群通用模型,将目标分群转化为聚类问题。通过改进CBSCAN算法的簇类扩展方式,建立基于改进CBSCAN算法的目标分群模型。通过仿真实验,对比分析了K-means、最大期望算法、密度峰值算法、密度聚类算法、CBSCAN算法和改进CBSCAN算法在30种作战态势下的分群准确性和实时性,结果表明:改进CBSCAN算法可以在编队数目未知和目标流形分布的条件下,对多目标编队进行正确分群,且实时性较原始算法提高约30%,具有实际应用价值。展开更多
针对海战场环境下态势评估中目标数量多、类型复杂多样的问题,首先引入数据聚类对态势评估的目标分群环节进行聚类分群,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的密度聚类,可聚类任意形状的...针对海战场环境下态势评估中目标数量多、类型复杂多样的问题,首先引入数据聚类对态势评估的目标分群环节进行聚类分群,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的密度聚类,可聚类任意形状的数据簇,遍历性好,能够对战场环境下目标进行全面合理的分群;然后,给出了算法计算的基本步骤,并利用算例对已知战场态势的目标群进行正确性验证;最后,将该算法与基于划分的K-means算法、基于层次的AGNES(AGglomerative NESting)算法进行了对比分析,证明了该算法的有效性和合理性。展开更多
文摘目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSFDP)的目标分群方法。该方法将目标分群转化为数据集聚类问题,通过计算目标间的流形距离来衡量目标间的相似度,然后在流形距离的基础上利用CFSFDP算法搜索聚类中心,指定其余数据点类别。仿真实验以人工数据集和UCI数据集为对象,验证了M-CFSFDP算法聚类效果优于CFSFDP算法;同时将M-CFSFDP应用在战场目标静态与动态分群中,仿真结果表明了该方法的正确性与有效性。
文摘针对传统聚类算法对流形分布数据聚类效果差,且实时性不高的缺点,提出改进基于cell的密度聚类(Cell-Based density Spatial Clustering of Applications with Noise, CBSCAN)算法解决实时空战目标分群问题。通过分析空战态势参数,建立了空战目标分群通用模型,将目标分群转化为聚类问题。通过改进CBSCAN算法的簇类扩展方式,建立基于改进CBSCAN算法的目标分群模型。通过仿真实验,对比分析了K-means、最大期望算法、密度峰值算法、密度聚类算法、CBSCAN算法和改进CBSCAN算法在30种作战态势下的分群准确性和实时性,结果表明:改进CBSCAN算法可以在编队数目未知和目标流形分布的条件下,对多目标编队进行正确分群,且实时性较原始算法提高约30%,具有实际应用价值。
文摘针对海战场环境下态势评估中目标数量多、类型复杂多样的问题,首先引入数据聚类对态势评估的目标分群环节进行聚类分群,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的密度聚类,可聚类任意形状的数据簇,遍历性好,能够对战场环境下目标进行全面合理的分群;然后,给出了算法计算的基本步骤,并利用算例对已知战场态势的目标群进行正确性验证;最后,将该算法与基于划分的K-means算法、基于层次的AGNES(AGglomerative NESting)算法进行了对比分析,证明了该算法的有效性和合理性。