期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向一致性对话生成的对抗匹配网络与目标侧注意力机制研究
1
作者
蔡恒毅
王成瑞
+3 位作者
宋永浩
袁旭
张程
赵晓芳
《高技术通讯》
CAS
2022年第2期131-142,共12页
序列到序列(seq2seq)方法在开放域对话生成领域中备受研究学者的关注。然而,标准的序列到序列模型容易产生语义冲突和不连贯的对话回复,这种不一致性是现有系统生成的回复显著有别于人类真实对话的重要原因之一。对话生成中的一致性既...
序列到序列(seq2seq)方法在开放域对话生成领域中备受研究学者的关注。然而,标准的序列到序列模型容易产生语义冲突和不连贯的对话回复,这种不一致性是现有系统生成的回复显著有别于人类真实对话的重要原因之一。对话生成中的一致性既包括回复内部的语义一致性,也包括上文与其回复之间的外部关联性。本文提出了一个新的对话生成框架,称为基于张量匹配的生成式对抗网络(MatchGAN),以提高对话回复与其上文之间的外部关联性。与传统的基于最大似然估计的方法不同,该框架通过基于序列到序列模型的生成器和基于张量匹配网络的判别器之间的对抗学习来生成与上文相关的回复。通过使用匹配网络对上文与回复之间的多维关系进行建模,该模型所产生的回复更加符合人类对话的特点。此外,本研究进一步引入了目标侧注意力机制来增强所产生回复的内部语义一致性。实验结果表明,本文提出的框架能够产生高质量的对话回复,在量化指标评价和人工评测方面均优于其他基线方法。
展开更多
关键词
生成式对话模型
神经张量网络
对抗学习
目标侧注意力机制
在线阅读
下载PDF
职称材料
题名
面向一致性对话生成的对抗匹配网络与目标侧注意力机制研究
1
作者
蔡恒毅
王成瑞
宋永浩
袁旭
张程
赵晓芳
机构
中国科学院计算技术研究所
中国科学院大学
出处
《高技术通讯》
CAS
2022年第2期131-142,共12页
基金
国家自然科学基金(U1836111,U1736106)
国家重点研发计划(2018YFB0904503)资助项目。
文摘
序列到序列(seq2seq)方法在开放域对话生成领域中备受研究学者的关注。然而,标准的序列到序列模型容易产生语义冲突和不连贯的对话回复,这种不一致性是现有系统生成的回复显著有别于人类真实对话的重要原因之一。对话生成中的一致性既包括回复内部的语义一致性,也包括上文与其回复之间的外部关联性。本文提出了一个新的对话生成框架,称为基于张量匹配的生成式对抗网络(MatchGAN),以提高对话回复与其上文之间的外部关联性。与传统的基于最大似然估计的方法不同,该框架通过基于序列到序列模型的生成器和基于张量匹配网络的判别器之间的对抗学习来生成与上文相关的回复。通过使用匹配网络对上文与回复之间的多维关系进行建模,该模型所产生的回复更加符合人类对话的特点。此外,本研究进一步引入了目标侧注意力机制来增强所产生回复的内部语义一致性。实验结果表明,本文提出的框架能够产生高质量的对话回复,在量化指标评价和人工评测方面均优于其他基线方法。
关键词
生成式对话模型
神经张量网络
对抗学习
目标侧注意力机制
Keywords
neural dialogue generation
neural tensor layer
adversarial learning
target-side attention mechanism
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向一致性对话生成的对抗匹配网络与目标侧注意力机制研究
蔡恒毅
王成瑞
宋永浩
袁旭
张程
赵晓芳
《高技术通讯》
CAS
2022
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部