Teaching evaluation on a WebGIS course is a multi-objective nonlinear high-dimensional NP-hard problem. The index system for the teaching evaluation of a WebGIS course, including teacher- and student-oriented sub-syst...Teaching evaluation on a WebGIS course is a multi-objective nonlinear high-dimensional NP-hard problem. The index system for the teaching evaluation of a WebGIS course, including teacher- and student-oriented sub-systems, is first established and used for questionnaires from 2013 to 2017. The multi-objective nonlinear high-dimensional evaluation model is constructed and then solved via dynamic self-adaptive teaching–learning-based optimization (DSATLBO). DSATLBO is based on teaching–learning-based optimization with five improvements: dynamic nonlinear self-adaptive teaching factor, extracurricular tutorship factor, dynamic self-adaptive learning factor, multi-way learning factor, and non-dominated sorting factor. WebGIS teaching performance is fully evaluated based on questionnaires and DSATLBO. Optimal weights and weighted scores from DSATLBO are compared with those from the non-dominated sorting genetic algorithm-II using the Pareto front, coverage to two sets, and spacing of the non-dominated solution sets to validate the performance of DSATLBO. The results show that DSATLBO can be uniformly distributed along the Pareto front. Therefore, DSATLBO can efficiently and feasibly solve the multi-objective nonlinear high-dimensional teaching evaluation model of a WebGIS course. The proposed teaching evaluation method can help reflecting the quality of all aspects of classroom teaching and guide the professional development of students.展开更多
Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed...Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.展开更多
Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered befo...Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered before such schemes are implemented.This paper focuses on the cordon-based pricing with distance tolls,where the tolls are determined by a nonlinear function of a vehicles' travel distance within a cordon,termed as toll charge function.The optimal tolls can give rise to:1) higher total social benefits,2) better levels of equity,and 3) reduced environmental impacts(e.g.,less emission).Firstly,a deterministic equilibrium(DUE) model with elastic demand is presented to evaluate any given toll charge function.The distance tolls are non-additive,thus a modified path-based gradient projection algorithm is developed to solve the DUE model.Then,to quantitatively measure the equity level of each toll charge function,the Gini coefficient is adopted to measure the equity level of the flows in the entire transport network based on equilibrium flows.The total emission level is used to reflect the impacts of distance tolls on the environment.With these two indexes/measurements for the efficiency,equity and environmental issues as well as the DUE model,a multi-objective bi-level programming model is then developed to determine optimal distance tolls.The multi-objective model is converted to a single level model using the goal programming.A genetic algorithm(GA) is adopted to determine solutions.Finally,a numerical example is presented to verify the methodology.展开更多
基金Project(41661026)supported by the National Natural Science Foundation of ChinaProject supported by the Fund for the Construction of Western-China First-class Specialty of Ningxia University,China
文摘Teaching evaluation on a WebGIS course is a multi-objective nonlinear high-dimensional NP-hard problem. The index system for the teaching evaluation of a WebGIS course, including teacher- and student-oriented sub-systems, is first established and used for questionnaires from 2013 to 2017. The multi-objective nonlinear high-dimensional evaluation model is constructed and then solved via dynamic self-adaptive teaching–learning-based optimization (DSATLBO). DSATLBO is based on teaching–learning-based optimization with five improvements: dynamic nonlinear self-adaptive teaching factor, extracurricular tutorship factor, dynamic self-adaptive learning factor, multi-way learning factor, and non-dominated sorting factor. WebGIS teaching performance is fully evaluated based on questionnaires and DSATLBO. Optimal weights and weighted scores from DSATLBO are compared with those from the non-dominated sorting genetic algorithm-II using the Pareto front, coverage to two sets, and spacing of the non-dominated solution sets to validate the performance of DSATLBO. The results show that DSATLBO can be uniformly distributed along the Pareto front. Therefore, DSATLBO can efficiently and feasibly solve the multi-objective nonlinear high-dimensional teaching evaluation model of a WebGIS course. The proposed teaching evaluation method can help reflecting the quality of all aspects of classroom teaching and guide the professional development of students.
基金Project(3502Z20179026)supported by Xiamen Science and Technology Project,China。
文摘Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.
基金Projects (61304198,61374195) supported by the National Natural Science Foundation of ChinaProjects (2013M530159,2014T70351) supported by the China Postdoctoral Science Foundation
文摘Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered before such schemes are implemented.This paper focuses on the cordon-based pricing with distance tolls,where the tolls are determined by a nonlinear function of a vehicles' travel distance within a cordon,termed as toll charge function.The optimal tolls can give rise to:1) higher total social benefits,2) better levels of equity,and 3) reduced environmental impacts(e.g.,less emission).Firstly,a deterministic equilibrium(DUE) model with elastic demand is presented to evaluate any given toll charge function.The distance tolls are non-additive,thus a modified path-based gradient projection algorithm is developed to solve the DUE model.Then,to quantitatively measure the equity level of each toll charge function,the Gini coefficient is adopted to measure the equity level of the flows in the entire transport network based on equilibrium flows.The total emission level is used to reflect the impacts of distance tolls on the environment.With these two indexes/measurements for the efficiency,equity and environmental issues as well as the DUE model,a multi-objective bi-level programming model is then developed to determine optimal distance tolls.The multi-objective model is converted to a single level model using the goal programming.A genetic algorithm(GA) is adopted to determine solutions.Finally,a numerical example is presented to verify the methodology.