期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
关于LLE算法的监督型参数设置方法及应用 被引量:1
1
作者 孙小丹 《信息技术》 2019年第6期72-76,共5页
采用局部线性嵌入(Locally Linear Embedding,LLE)算法进行数据降维时,不仅能保持数据分布的局部线性特征,同时还能保存数据分布的流形结构,因此该算法常用于高光谱影像的数据降维。其中,关于最近邻像元个数K的设置是执行该算法的关键... 采用局部线性嵌入(Locally Linear Embedding,LLE)算法进行数据降维时,不仅能保持数据分布的局部线性特征,同时还能保存数据分布的流形结构,因此该算法常用于高光谱影像的数据降维。其中,关于最近邻像元个数K的设置是执行该算法的关键。然而,关于K值的设置,目前尚无一个行之有效的方案。针对这一问题,文中基于监督型特征提取的思想,从"线性预测误差均值最小化"的角度出发,提出了一个监督型参数设置方法。同时,为了验证该方法的可行性和优越性,结合两个实验区Hyperion影像关于第26至57波段包含的32维光谱数据,进行了降维实验。最后,通过分析对比实验结果,证明了:采用LLE算法进行高光谱影像数据降维时,若依据文中所提方法设置的K值,能获得噪声点少且地物细节信息更加丰富的低维影像数据。 展开更多
关键词 局部线性嵌入算法 最近邻像元个数 监督型参数设置方法 数据降维
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部