期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于安全性的成对约束扩充算法 被引量:2
1
作者 杨帆 王俊斌 白亮 《计算机科学》 CSCD 北大核心 2020年第9期324-329,共6页
基于成对约束的聚类分析是半监督学习的一个重要研究方向。成对约束的数量已成为影响该类算法有效性的重要因素。然而,在现实应用中,成对约束的获取需要耗费大量的成本。因此,文中提出了一种基于安全性的成对约束扩充方法(Extended Algo... 基于成对约束的聚类分析是半监督学习的一个重要研究方向。成对约束的数量已成为影响该类算法有效性的重要因素。然而,在现实应用中,成对约束的获取需要耗费大量的成本。因此,文中提出了一种基于安全性的成对约束扩充方法(Extended Algorithm of Pairwise Constraints Based on Security,PCES)。该算法将传递闭包中最大局部连通距离作为安全值,并根据安全值来修改传递闭包之间的相似性,减少合并传递闭包带来的风险,最后利用图聚类方法合并相似的传递闭包达到扩充成对约束的目的。该算法不仅可以安全有效地扩充成对约束,同时可以将扩充后的成对约束应用到不同半监督聚类算法中。文中在8个基准数据集上进行了成对约束扩充算法的比较。实验结果表明,该算法可以安全有效地扩充成对约束。 展开更多
关键词 成对约束 监督聚类 监督信息的有效性 监督信息的扩展
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部