Photogrammetry, as a tool for monitoring underground mine deformation, is an alternative to traditional point measurement devices, and may be capable of accurate measurements in situations where technolo- gies such as...Photogrammetry, as a tool for monitoring underground mine deformation, is an alternative to traditional point measurement devices, and may be capable of accurate measurements in situations where technolo- gies such as laser scanning are unsuited, undesired, or cost-prohibitive. An underground limestone mine in Ohio is used as a test case for monitoring of structurally unstable pillars. Seven pillars were pho- tographed over in a 63 day period, punctuated by four visits. Using photogrammetry, point clouds of the mine geometry were obtained and triangulation surfaces were generated to determine volumes of change over time. Pillar spaUing in the range of 0.29-4.03 m3 of rock on individual rib faces was detected. Isolated incidents of rock expansion prior to failure, and the isolated failure of a weak shale band were also observed. Much of the pillars remained unchanged during the monitoring period, which is indicative of proper alignment in the triangulated surfaces. The photographs of some ribs were of either too poor quality or had insufficient overlap, and were not included. However, photogrammetry was successfully aonlied to multiole ribs in auantifving the oillar geometrv change over time.展开更多
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitori...To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.展开更多
A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential w...A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata,the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress measurements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evident 150 m ahead of the longwall face and abutment loading reached a maximum increase of about7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The forward abutment load determined from the stress change monitoring is consistent with the weight of overburden strata overhanging the goaf indicated by subsidence monitoring.展开更多
文摘Photogrammetry, as a tool for monitoring underground mine deformation, is an alternative to traditional point measurement devices, and may be capable of accurate measurements in situations where technolo- gies such as laser scanning are unsuited, undesired, or cost-prohibitive. An underground limestone mine in Ohio is used as a test case for monitoring of structurally unstable pillars. Seven pillars were pho- tographed over in a 63 day period, punctuated by four visits. Using photogrammetry, point clouds of the mine geometry were obtained and triangulation surfaces were generated to determine volumes of change over time. Pillar spaUing in the range of 0.29-4.03 m3 of rock on individual rib faces was detected. Isolated incidents of rock expansion prior to failure, and the isolated failure of a weak shale band were also observed. Much of the pillars remained unchanged during the monitoring period, which is indicative of proper alignment in the triangulated surfaces. The photographs of some ribs were of either too poor quality or had insufficient overlap, and were not included. However, photogrammetry was successfully aonlied to multiole ribs in auantifving the oillar geometrv change over time.
基金Project 50279005 supported by the National Natural Science Foundation of China
文摘To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.
文摘A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata,the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress measurements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evident 150 m ahead of the longwall face and abutment loading reached a maximum increase of about7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The forward abutment load determined from the stress change monitoring is consistent with the weight of overburden strata overhanging the goaf indicated by subsidence monitoring.