期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度残差网络的皮肤镜图像黑色素瘤的识别
被引量:
31
1
作者
李航
余镇
+2 位作者
倪东
雷柏英
汪天富
《中国生物医学工程学报》
CAS
CSCD
北大核心
2018年第3期274-282,共9页
恶性黑色素瘤是最常见和最致命的皮肤癌之一。临床上,皮肤镜检查是恶性黑色素瘤早期诊断的常规手段。但是人工检查费力、费时,并且高度依赖于皮肤科医生的临床经验。因此,研究出自动识别皮肤镜图像中的黑色素瘤算法显得尤为重要。提出...
恶性黑色素瘤是最常见和最致命的皮肤癌之一。临床上,皮肤镜检查是恶性黑色素瘤早期诊断的常规手段。但是人工检查费力、费时,并且高度依赖于皮肤科医生的临床经验。因此,研究出自动识别皮肤镜图像中的黑色素瘤算法显得尤为重要。提出一种皮肤镜图像自动评估的新框架,利用深度学习方法,使其在有限的训练数据下产生更具区分性的特征。具体来说,首先在大规模自然图像数据集上预训练一个深度为152层的残差神经网络(Res-152),用来提取皮肤病变图像的深度卷积层特征,并对其使用均值池化得到特征向量,然后利用支持向量机(SVM)对提取的黑色素瘤特征进行分类。在公开的皮肤病变图像ISBI 2016挑战数据集中,用所提出的方法对248幅黑色素瘤图像和1 031幅非黑色素瘤图像进行评估,达到86.28%的准确率及84.18%的AUC值。同时,为论证神经网络深度对分类结果的影响,比较不同深度的模型框架。与现有使用传统手工特征的研究(如基于密集采样SIFT描述符的词袋模型)相比,或仅从深层神经网络的全连接层提取特征进行分类的方法相比,新方法能够产生区分性能更强的特征表达,可以在有限的训练数据下解决黑色素瘤的类内差异大、黑色素瘤与非黑素瘤之间的类间差异小的问题。
展开更多
关键词
皮肤镜检查图像
黑色素瘤识别
残差网络
深度学习
在线阅读
下载PDF
职称材料
题名
基于深度残差网络的皮肤镜图像黑色素瘤的识别
被引量:
31
1
作者
李航
余镇
倪东
雷柏英
汪天富
机构
深圳大学医学部生物医学工程学院
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2018年第3期274-282,共9页
基金
深圳市基础研究项目(JCYJ20150525092940986)
文摘
恶性黑色素瘤是最常见和最致命的皮肤癌之一。临床上,皮肤镜检查是恶性黑色素瘤早期诊断的常规手段。但是人工检查费力、费时,并且高度依赖于皮肤科医生的临床经验。因此,研究出自动识别皮肤镜图像中的黑色素瘤算法显得尤为重要。提出一种皮肤镜图像自动评估的新框架,利用深度学习方法,使其在有限的训练数据下产生更具区分性的特征。具体来说,首先在大规模自然图像数据集上预训练一个深度为152层的残差神经网络(Res-152),用来提取皮肤病变图像的深度卷积层特征,并对其使用均值池化得到特征向量,然后利用支持向量机(SVM)对提取的黑色素瘤特征进行分类。在公开的皮肤病变图像ISBI 2016挑战数据集中,用所提出的方法对248幅黑色素瘤图像和1 031幅非黑色素瘤图像进行评估,达到86.28%的准确率及84.18%的AUC值。同时,为论证神经网络深度对分类结果的影响,比较不同深度的模型框架。与现有使用传统手工特征的研究(如基于密集采样SIFT描述符的词袋模型)相比,或仅从深层神经网络的全连接层提取特征进行分类的方法相比,新方法能够产生区分性能更强的特征表达,可以在有限的训练数据下解决黑色素瘤的类内差异大、黑色素瘤与非黑素瘤之间的类间差异小的问题。
关键词
皮肤镜检查图像
黑色素瘤识别
残差网络
深度学习
Keywords
dermoscopy image
melanoma recognition
residual network
deep learning
分类号
R318 [医药卫生—生物医学工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度残差网络的皮肤镜图像黑色素瘤的识别
李航
余镇
倪东
雷柏英
汪天富
《中国生物医学工程学报》
CAS
CSCD
北大核心
2018
31
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部