期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于注意力机制的深层特征融合MOOC评论情感分析
1
作者 韦金矿 贾灿 +1 位作者 王鹏飞 艾孜尔古丽·玉素甫 《现代电子技术》 北大核心 2025年第14期63-70,共8页
在线教育因大众对多样化学习的渴求及技术进步而迅猛发展。分析中国大学MOOC网站上在线评论的情感倾向,对于课程的优化及平台的高质量发展具有重要意义。针对目前文本情感分析任务中存在的难以充分提取和融合文本特征信息、泛化性能不... 在线教育因大众对多样化学习的渴求及技术进步而迅猛发展。分析中国大学MOOC网站上在线评论的情感倾向,对于课程的优化及平台的高质量发展具有重要意义。针对目前文本情感分析任务中存在的难以充分提取和融合文本特征信息、泛化性能不足的问题,提出一种基于注意力机制的深层特征融合MOOC评论情感分析模型,即BERT-RAP。利用BERT提取出文本的丰富语义,通过BiLSTM进一步提取序列信息来更好地捕捉文本的特征表达,同时采用注意力机制捕捉序列中最相关的部分;之后对MOOC评论文本进行关键词提取,并将关键词词嵌入与注意力加权的BiLSTM输出通过亲和力矩阵进行特征交互,以便模型融合不同的特征来挖掘更深层的语义。由于数据可能存在较大离群值,采用百分比池化方法在一定程度上降低模型对离群值的敏感程度,从而提高模型的鲁棒性。最后通过情感分类器获得文本所属情感。实验结果表明,在MOOC评论数据集上,与文本情感分析基线模型相比,所提模型情感分类效果更佳。 展开更多
关键词 MOOC评论文本 情感分析 语义提取 特征融合 BERT模型 BiLSTM 自注意力机制 百分比池化方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部