期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
WPD-COA-EL M模型在汛期月降水量时间序列预测中的应用研究 被引量:6
1
作者 杨琼波 崔东文 《水文》 CSCD 北大核心 2023年第1期17-23,共7页
针对月降水量时间序列多尺度非平稳性特点,提出小波包分解(WPD)-白骨顶鸟优化算法(COA)-极限学习机(ELM)相融合的降水量预测模型。首先,利用WPD将非平稳月降水量时间序列分解为若干子序列分量;然后在不同维度条件下利用6个典型函数对CO... 针对月降水量时间序列多尺度非平稳性特点,提出小波包分解(WPD)-白骨顶鸟优化算法(COA)-极限学习机(ELM)相融合的降水量预测模型。首先,利用WPD将非平稳月降水量时间序列分解为若干子序列分量;然后在不同维度条件下利用6个典型函数对COA进行仿真测试;利用COA优化ELM输入层权值和隐含层偏值,对每一个子序列分量分别建立COA-ELM模型进行预测,将预测结果叠加重构后即为最终预测结果;最后,以云南省龙潭站汛期和主汛期月降水量数据为例进行实验,并与WPD-COA-BP、WPD-ELM、WPD-BP预测模型进行比较。结果表明:COA在不同维度条件下均具有较好的寻优精度和全局搜索能力。WPD-COA-ELM模型对实例汛期、主汛期月降水量时间序列预测的平均绝对百分比误差分别为3.91%、3.59%,预测精度优于WPD-COA-BP模型,远优于WPD-ELM.WPD-BP模型。WPD能科学降低月降水时间序列数据的复杂性,提高预测效果;COA能有效优化ELM输入层权值和隐含层偏值,提高ELM网络性能。 展开更多
关键词 降水量预测 小波包分解 白骨顶鸟优化算法 极限学习机 仿真测试
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部