期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较
被引量:
6
1
作者
张晓芳
郭旭展
+3 位作者
洪亮
陈涛
符利勇
张会儒
《林业科学》
EI
CAS
CSCD
北大核心
2022年第10期89-100,共12页
【目的】构建冬奥核心区华北落叶松和白桦单木冠幅预测模型,对比不同模型的优缺点,给出模型选择建议,为获取更多的单木和林分参数提供支撑,为华北落叶松和白桦科学经营决策提供理论依据。【方法】以冬奥核心区4 537株华北落叶松和2 603...
【目的】构建冬奥核心区华北落叶松和白桦单木冠幅预测模型,对比不同模型的优缺点,给出模型选择建议,为获取更多的单木和林分参数提供支撑,为华北落叶松和白桦科学经营决策提供理论依据。【方法】以冬奥核心区4 537株华北落叶松和2 603株白桦为研究对象,首先,选取10种常用冠幅-胸径模型作为备选模型分别拟合华北落叶松和白桦数据,从中选出AIC和BIC最小的模型作为基础模型;然后,在基础模型中进一步添加与冠幅相关系数大的变量作为协变量构建修正模型;最后,在修正模型基础上分别构建华北落叶松和白桦冠幅的非线性最小二乘模型、单水平非线性混合效应模型、加性模型和组级贝叶斯模型。【结果】4种华北落叶松冠幅模型中,加性模型的预测精度最高(R^(2)_mean=0.704 3,RMSE_mean=0.512 7),4种白桦冠幅模型中,非线性混合效应模型的预测精度最高(R^(2)_mean=0.664 3,RMSE_mean=0.794 4)。在变量方面,华北落叶松和白桦冠幅均随其胸径递增,华北落叶松冠幅随其树高缓慢递增、枝下高递减,白桦冠幅随其冠长率先减小后增大,并受林分密度影响波动较大,当林分密度为600~800 hm-2时,白桦冠幅随林分密度递减,此时应进行适当补植;当林分密度为800~1 000 hm-2时,白桦冠幅随林分密度递增,并在1 000 hm-2时出现拐点,如果经营目的是为了环境保护,可将林分密度控制在1 000 hm-2左右;当林分密度为1 000~1 200 hm-2时,白桦冠幅随林分密度递减,此时可对林分进行抚育间伐调整林分密度。【结论】冬奥核心区华北落叶松冠幅受胸径、树高和枝下高影响较大,白桦冠幅受胸径、冠长率和林分密度影响较大。无论是预测华北落叶松还是白桦冠幅,组级贝叶斯模型、加性模型和非线性混合效应模型效果均优于非线性最小二乘模型,在仅添加样地随机效应的情况下,首选加性模型和非线性混合效应模型,其次选择组级贝叶斯模型,但考虑到训练组级贝叶斯模型时间长、对表达式敏感等因素,可用别的模型替代时建议不使用组级贝叶斯模型。
展开更多
关键词
华北落叶松
冠
幅
预测
模型
白桦冠幅预测模型
非线性混合效应
模型
组级贝叶斯
模型
加性
模型
冬奥核心区
在线阅读
下载PDF
职称材料
题名
冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较
被引量:
6
1
作者
张晓芳
郭旭展
洪亮
陈涛
符利勇
张会儒
机构
中国林业科学研究院资源信息研究所
国家林业和草原局森林经营与生长模拟重点实验室
信阳师范学院计算机与信息技术学院
信阳师范学院数学与统计学院
中国林业科学研究院华北林业实验中心
河北省张家口市崇礼区林业和草原局
出处
《林业科学》
EI
CAS
CSCD
北大核心
2022年第10期89-100,共12页
基金
张家口市崇礼区森林防火综合体系建设无人机巡护监测系统(DA2020001)
国家自然科学基金面上项目(31971653)。
文摘
【目的】构建冬奥核心区华北落叶松和白桦单木冠幅预测模型,对比不同模型的优缺点,给出模型选择建议,为获取更多的单木和林分参数提供支撑,为华北落叶松和白桦科学经营决策提供理论依据。【方法】以冬奥核心区4 537株华北落叶松和2 603株白桦为研究对象,首先,选取10种常用冠幅-胸径模型作为备选模型分别拟合华北落叶松和白桦数据,从中选出AIC和BIC最小的模型作为基础模型;然后,在基础模型中进一步添加与冠幅相关系数大的变量作为协变量构建修正模型;最后,在修正模型基础上分别构建华北落叶松和白桦冠幅的非线性最小二乘模型、单水平非线性混合效应模型、加性模型和组级贝叶斯模型。【结果】4种华北落叶松冠幅模型中,加性模型的预测精度最高(R^(2)_mean=0.704 3,RMSE_mean=0.512 7),4种白桦冠幅模型中,非线性混合效应模型的预测精度最高(R^(2)_mean=0.664 3,RMSE_mean=0.794 4)。在变量方面,华北落叶松和白桦冠幅均随其胸径递增,华北落叶松冠幅随其树高缓慢递增、枝下高递减,白桦冠幅随其冠长率先减小后增大,并受林分密度影响波动较大,当林分密度为600~800 hm-2时,白桦冠幅随林分密度递减,此时应进行适当补植;当林分密度为800~1 000 hm-2时,白桦冠幅随林分密度递增,并在1 000 hm-2时出现拐点,如果经营目的是为了环境保护,可将林分密度控制在1 000 hm-2左右;当林分密度为1 000~1 200 hm-2时,白桦冠幅随林分密度递减,此时可对林分进行抚育间伐调整林分密度。【结论】冬奥核心区华北落叶松冠幅受胸径、树高和枝下高影响较大,白桦冠幅受胸径、冠长率和林分密度影响较大。无论是预测华北落叶松还是白桦冠幅,组级贝叶斯模型、加性模型和非线性混合效应模型效果均优于非线性最小二乘模型,在仅添加样地随机效应的情况下,首选加性模型和非线性混合效应模型,其次选择组级贝叶斯模型,但考虑到训练组级贝叶斯模型时间长、对表达式敏感等因素,可用别的模型替代时建议不使用组级贝叶斯模型。
关键词
华北落叶松
冠
幅
预测
模型
白桦冠幅预测模型
非线性混合效应
模型
组级贝叶斯
模型
加性
模型
冬奥核心区
Keywords
crown prediction models of Larix principis-rupprechtii
crown prediction models of Betula platyphylla
nonlinear mixed effect model
group-level Bayesian model
generalized additive model
core area of the Winter Olympics
分类号
S758 [农业科学—森林经理学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较
张晓芳
郭旭展
洪亮
陈涛
符利勇
张会儒
《林业科学》
EI
CAS
CSCD
北大核心
2022
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部