期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于深度学习的肺部CT图像病灶区域分割研究综述 被引量:1
1
作者 李小童 马素芬 +2 位作者 生慧 魏国辉 李欣桐 《计算机工程与应用》 北大核心 2025年第4期25-42,共18页
肺癌严重威胁人们的生命健康。肺部CT图像病灶区域形态复杂多样,实现高精度的肺部CT图像病变区域分割,成为计算机辅助诊断领域的一个极具挑战性的关键问题。基于深度学习的肺部病灶区域分割不仅可以帮助医生快速、准确地诊断出早期肺癌... 肺癌严重威胁人们的生命健康。肺部CT图像病灶区域形态复杂多样,实现高精度的肺部CT图像病变区域分割,成为计算机辅助诊断领域的一个极具挑战性的关键问题。基于深度学习的肺部病灶区域分割不仅可以帮助医生快速、准确地诊断出早期肺癌,而且对于肺癌的治疗也具有重要的临床价值。为了深入研究肺部病灶区域分割技术,介绍了常用的数据集及评价指标;重点从基于卷积神经网络、基于U-Net模型、基于生成对抗网络三个方面对深度学习肺部病灶区域分割模型进行了综述;结合具体实验总结了近5年国内外研究的创新点,对比分析了各个模型的分割性能;最后总结了各类模型的优缺点,展望了该领域的未来发展方向。 展开更多
关键词 深度学习 肺部病灶区域分割 卷积神经网络 U-Net模型 生成对抗网络
在线阅读 下载PDF
基于改进YOLOv5的胶囊内窥镜病灶区域检测 被引量:2
2
作者 涂继辉 肖亚南 +2 位作者 卜雪奎 张庆 李杰 《科学技术与工程》 北大核心 2024年第7期2821-2828,共8页
针对目前胶囊内窥镜病灶检测模型存在检测疾病单一且效率低等问题,提出了一种基于YOLOv5的胶囊内窥镜病灶区域检测方法。该方法在原始YOLOv5基础上进行了如下改进:首先,在主干网络Backbone部分,添加一个CBAM(convolutional block attent... 针对目前胶囊内窥镜病灶检测模型存在检测疾病单一且效率低等问题,提出了一种基于YOLOv5的胶囊内窥镜病灶区域检测方法。该方法在原始YOLOv5基础上进行了如下改进:首先,在主干网络Backbone部分,添加一个CBAM(convolutional block attention module)模块,增强模型对重要特征的突出能力;其次,在头部网络Head部分,添加一个检测头,增强模型对小目标的检测能力;最后,将原始YOLOv5的泛化交并比(generalized intersection over union, GIoU)损失函数替换成完整交并比(complete intersection over union, CIoU)损失函数,使模型训练时更快地收敛。本文提出的方法在长江大学第一临床医学院提供的胶囊内窥镜影像数据上进行了实验,精确率达到了93.6%,召回率达到了94.3%,mAP@0.5达到了97.2%,而且检测速度达到了每帧0.027 2 s。实验结果表明提出的方法是有效的、灵活的、鲁棒的,能够满足临床医学诊断的实际需求。 展开更多
关键词 胶囊内窥镜 病灶区域检测 YOLOv5 注意力机制
在线阅读 下载PDF
深度学习在糖尿病视网膜病灶检测中的应用综述 被引量:5
3
作者 聂永琦 曹慧 +1 位作者 杨锋 刘静 《计算机工程与应用》 CSCD 北大核心 2021年第20期25-41,共17页
糖尿病视网膜病变是世界上致盲率最高的眼科疾病,早期诊断可以显著降低患者失明的概率。深度学习方法可以提取医学图像的隐含特征,并完成图像的检测任务,因此应用深度学习实现糖尿病视网膜病灶检测成为研究热点。主要从数据集介绍、全... 糖尿病视网膜病变是世界上致盲率最高的眼科疾病,早期诊断可以显著降低患者失明的概率。深度学习方法可以提取医学图像的隐含特征,并完成图像的检测任务,因此应用深度学习实现糖尿病视网膜病灶检测成为研究热点。主要从数据集介绍、全监督检测方法、非完全监督检测方法、小样本问题的处理和模型可解释性五个方面进行详细总结,重点整理各类方法的基本思想、网络结构形式、改进方案及优缺点总结等内容,结合当前检测方法所面临的挑战,对其未来研究方向进行展望。 展开更多
关键词 深度学习 糖尿病视网膜病变 卷积神经网络 病灶区域检测
在线阅读 下载PDF
基于U-Net的多尺度特征增强视网膜血管分割算法 被引量:3
4
作者 张志昂 廖光忠 《计算机应用》 CSCD 北大核心 2023年第10期3275-3281,共7页
针对传统视网膜血管分割算法存在血管分割精度低和病灶区域误分割等缺点,提出一种基于U-Net的多尺度特征增强视网膜血管分割算法(MFEU-Net)。首先,为解决梯度消失问题,设计一种改进的特征信息增强残差模块(FIE-RM)替代U-Net的卷积块;其... 针对传统视网膜血管分割算法存在血管分割精度低和病灶区域误分割等缺点,提出一种基于U-Net的多尺度特征增强视网膜血管分割算法(MFEU-Net)。首先,为解决梯度消失问题,设计一种改进的特征信息增强残差模块(FIE-RM)替代U-Net的卷积块;其次,为扩大感受野并提高对血管信息特征的抽取能力,在U-Net的底部引入多尺度密集空洞卷积模块;最后,为减少编解码过程中的信息损失,在U-Net的跳跃连接处构建多尺度通道增强模块。在DRIVE(Digital Retinal Images for Vessel Extraction)和CHASE_DB1数据集上的实验结果表明,与在视网膜血管分割方面表现次优的算法CS-Net(Channel and Spatial attention Network)相比,MFEU-Net的F1分数分别提高了0.35和1.55个百分点,曲线下面积(AUC)分别提高了0.34和1.50个百分点,这验证了MFEU-Net可以有效提高对视网膜血管分割的准确性和鲁棒性。 展开更多
关键词 视网膜血管分割 U-Net 多尺度信息 密集空洞卷积 残差网络 病灶区域
在线阅读 下载PDF
基于深度学习OCT辅助诊断湿性年龄相关性黄斑变性算法的应用 被引量:12
5
作者 龚雁 顾在旺 +4 位作者 胡衍 廖燕红 叶婷 刘栋 刘江 《中华实验眼科杂志》 CAS CSCD 北大核心 2019年第8期658-662,共5页
目的探讨基于深度学习光相干断层扫描(OCT)辅助诊断湿性年龄相关性黄斑变性(wAMD)算法的应用价值。方法在仅能提供有无疾病作为标记的前提下,首先基于ResNet-101深度模型训练一个深度神经网络来自动判断患者是否患有wAMD疾病,其次将基... 目的探讨基于深度学习光相干断层扫描(OCT)辅助诊断湿性年龄相关性黄斑变性(wAMD)算法的应用价值。方法在仅能提供有无疾病作为标记的前提下,首先基于ResNet-101深度模型训练一个深度神经网络来自动判断患者是否患有wAMD疾病,其次将基于弱监督深度学习的算法应用于OCT图像自动辅助诊断wAMD的疾病区域,同时使用热力图为医生诊断疾病区域提供依据。基于弱监督的深度学习,使用了一种新型的网络算法结构应用于眼科OCT图像的疾病区域检测中,同时通过改进传统病灶区域生成方式来提高病灶热力图的准确性,通过重新组合神经网络中的权重神经元的数值生成病灶热力图,最后通过计算算法预测正确的结果占所有预测结果的比重得到最终的算法准确率。结果基于Resnet的深度学习算法对于wAMD的诊断准确率达到94.9%,远高于AlexNet的85.3%、VGG的88.7%和Google-Net的89.2%;同时热力图通过不同的颜色为医生提供更方便的辅助诊断依据。结论相比较原始的基于疾病区域标记作为经验知识的分类网络,基于弱监督学习的深度学习算法模型在无需提供疾病区域标记的前提下,不仅在眼底疾病分类上有较好的结果,还能标记潜在的病灶区域,为wAMD的诊断提供病灶区域的判断依据。 展开更多
关键词 湿性年龄相关性黄斑变性 疾病分类 病灶区域检测 弱监督深度学习
在线阅读 下载PDF
《介入放射学杂志》对文稿插图的要求
6
《介入放射学杂志》 CSCD 北大核心 2015年第11期1027-1027,共1页
为了更好地满足广大读者需要,提高印刷出版质量,《介入放射学杂志》决定自即日起,所有来稿的插图均必须符合下列要求:1.插图应仅限于显示文稿中描述的关键必要信息。除非必要,不鼓励采用既往曾在本刊或它刊发表过的图像,因为涉及到版... 为了更好地满足广大读者需要,提高印刷出版质量,《介入放射学杂志》决定自即日起,所有来稿的插图均必须符合下列要求:1.插图应仅限于显示文稿中描述的关键必要信息。除非必要,不鼓励采用既往曾在本刊或它刊发表过的图像,因为涉及到版权问题。2.所有一项插图的子图不得超过4个。由于杂志中印刷的图像尺寸通常小于作者提交的,对由多个子图组成的插图而言,每个子图应仅显示所关注区域及足够用于提示的周边区域(例如欲显示右肺顶端病灶,仅显示该病灶区域即可,而不是整个胸片)。所有插图包括子图,通常必须单独提交。 展开更多
关键词 病灶区域 图像尺寸 介入放射学杂志 子图 印刷出版 图像分辨率 版权问题 格式转换 图像文件格式 高分辨率图像
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部