期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于量子神经网络和组合特征参数的玉米叶部病害识别
被引量:
6
1
作者
张飞云
《南方农业学报》
CAS
CSCD
北大核心
2013年第8期1286-1290,共5页
【目的】探索一种基于量子神经网络和组合特征参数的玉米叶部病害识别方法,以提高玉米叶部病害识别的准确率和效率。【方法】应用K_means硬聚类算法对玉米叶部病害图像进行彩色图像分割,得到彩色分割图像,分别利用提升小波变换和灰度共...
【目的】探索一种基于量子神经网络和组合特征参数的玉米叶部病害识别方法,以提高玉米叶部病害识别的准确率和效率。【方法】应用K_means硬聚类算法对玉米叶部病害图像进行彩色图像分割,得到彩色分割图像,分别利用提升小波变换和灰度共生矩阵从彩色分割图像中提取颜色和纹理特征参数,利用多重分形分析从灰度图像中提取病害的形状特征参数。【结果】根据提取的组合特征参数,利用量子神经网络进行玉米病害分类识别,对玉米灰斑病、玉米普通锈病和玉米小斑病的识别率分别达到92.5%、97.5%和92.5%,高于误差反向传播神经网络法的识别率(分别为90.0%、90.0%和92.5%)。【结论】设计的方法可用于玉米叶部病害识别,并为其他农作物病害的智能识别提供借鉴。
展开更多
关键词
玉米
病害
组合特征参数
量子神经网络
病害识别率
识别
在线阅读
下载PDF
职称材料
题名
基于量子神经网络和组合特征参数的玉米叶部病害识别
被引量:
6
1
作者
张飞云
机构
许昌学院电气信息工程学院
出处
《南方农业学报》
CAS
CSCD
北大核心
2013年第8期1286-1290,共5页
基金
河南省教育厅科学技术研究重点项目(12A510021)
河南省许昌市科技计划项目(1101060)
文摘
【目的】探索一种基于量子神经网络和组合特征参数的玉米叶部病害识别方法,以提高玉米叶部病害识别的准确率和效率。【方法】应用K_means硬聚类算法对玉米叶部病害图像进行彩色图像分割,得到彩色分割图像,分别利用提升小波变换和灰度共生矩阵从彩色分割图像中提取颜色和纹理特征参数,利用多重分形分析从灰度图像中提取病害的形状特征参数。【结果】根据提取的组合特征参数,利用量子神经网络进行玉米病害分类识别,对玉米灰斑病、玉米普通锈病和玉米小斑病的识别率分别达到92.5%、97.5%和92.5%,高于误差反向传播神经网络法的识别率(分别为90.0%、90.0%和92.5%)。【结论】设计的方法可用于玉米叶部病害识别,并为其他农作物病害的智能识别提供借鉴。
关键词
玉米
病害
组合特征参数
量子神经网络
病害识别率
识别
Keywords
corn disease
combination characteristic parameter
quantum neural network
分类号
S431.11 [农业科学—农业昆虫与害虫防治]
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于量子神经网络和组合特征参数的玉米叶部病害识别
张飞云
《南方农业学报》
CAS
CSCD
北大核心
2013
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部