期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于量子神经网络和组合特征参数的玉米叶部病害识别 被引量:6
1
作者 张飞云 《南方农业学报》 CAS CSCD 北大核心 2013年第8期1286-1290,共5页
【目的】探索一种基于量子神经网络和组合特征参数的玉米叶部病害识别方法,以提高玉米叶部病害识别的准确率和效率。【方法】应用K_means硬聚类算法对玉米叶部病害图像进行彩色图像分割,得到彩色分割图像,分别利用提升小波变换和灰度共... 【目的】探索一种基于量子神经网络和组合特征参数的玉米叶部病害识别方法,以提高玉米叶部病害识别的准确率和效率。【方法】应用K_means硬聚类算法对玉米叶部病害图像进行彩色图像分割,得到彩色分割图像,分别利用提升小波变换和灰度共生矩阵从彩色分割图像中提取颜色和纹理特征参数,利用多重分形分析从灰度图像中提取病害的形状特征参数。【结果】根据提取的组合特征参数,利用量子神经网络进行玉米病害分类识别,对玉米灰斑病、玉米普通锈病和玉米小斑病的识别率分别达到92.5%、97.5%和92.5%,高于误差反向传播神经网络法的识别率(分别为90.0%、90.0%和92.5%)。【结论】设计的方法可用于玉米叶部病害识别,并为其他农作物病害的智能识别提供借鉴。 展开更多
关键词 玉米病害 组合特征参数 量子神经网络 病害识别率 识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部