期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MAC-LSTM的问题分类研究
被引量:
15
1
作者
余本功
许庆堂
张培行
《计算机应用研究》
CSCD
北大核心
2020年第1期40-43,共4页
针对问句文本通常较短、语义信息与词语共现信息不足等问题,提出一种多层级注意力卷积长短时记忆模型(multi-level attention convolution LSTM neural network,MAC-LSTM)的问题分类方法。相比基于词嵌入的深度学习模型,该方法使用疑问...
针对问句文本通常较短、语义信息与词语共现信息不足等问题,提出一种多层级注意力卷积长短时记忆模型(multi-level attention convolution LSTM neural network,MAC-LSTM)的问题分类方法。相比基于词嵌入的深度学习模型,该方法使用疑问词注意力机制对问句中的疑问词特征重点关注。同时,使用注意力机制结合卷积神经网络与长短时记忆模型各自文本建模的优势,既能够并行方式提取词汇级特征,又能够学习更高级别的长距离依赖特征。实验表明,该方法较传统的机器学习方法和普通的卷积神经网络、长短时记忆模型有明显的效果提升。
展开更多
关键词
问答系统
问题分类
注意力
机制
疑问词注意力机制
卷积神经网络
长短时记忆模型
在线阅读
下载PDF
职称材料
题名
基于MAC-LSTM的问题分类研究
被引量:
15
1
作者
余本功
许庆堂
张培行
机构
合肥工业大学管理学院
合肥工业大学过程优化与智能决策教育部重点实验室
出处
《计算机应用研究》
CSCD
北大核心
2020年第1期40-43,共4页
基金
国家自然科学基金资助项目(71671057).
文摘
针对问句文本通常较短、语义信息与词语共现信息不足等问题,提出一种多层级注意力卷积长短时记忆模型(multi-level attention convolution LSTM neural network,MAC-LSTM)的问题分类方法。相比基于词嵌入的深度学习模型,该方法使用疑问词注意力机制对问句中的疑问词特征重点关注。同时,使用注意力机制结合卷积神经网络与长短时记忆模型各自文本建模的优势,既能够并行方式提取词汇级特征,又能够学习更高级别的长距离依赖特征。实验表明,该方法较传统的机器学习方法和普通的卷积神经网络、长短时记忆模型有明显的效果提升。
关键词
问答系统
问题分类
注意力
机制
疑问词注意力机制
卷积神经网络
长短时记忆模型
Keywords
question and answering
question classification
attention mechanism
interrogative attention mechanism
convolutional neural networks
LSTM
分类号
TP391.3 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MAC-LSTM的问题分类研究
余本功
许庆堂
张培行
《计算机应用研究》
CSCD
北大核心
2020
15
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部