Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, ther...Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, thermodynamic characteristic of Sn-9Zn solder alloy were analyzed. The tensile-shear tests were used to evaluate the mechanical properties of solder/Cu joints. The results show that the rapid solidification process can greatly refine the microstructure of Sn-9Zn-0.1Pr(/Nd) alloys. After rapid solidification, the effects of Pr/Nd addition on microstructure are depressed. The pasty range of the rapidly solidified Sn-Zn-RE solders is also reduced significantly. The mechanical properties of solder/Cu joints are obviously improved using the rapidly solidified Sn-9Zn-0.1Pr(/Nd) solder alloy, which results in the formation of uniform interface. The promotion effect of Nd addition in Sn-9Zn alloy on the interfacial reaction of solder/Cu joint is more remarkable than that of Pr.展开更多
The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The re...The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The relationship between the ratio of Fe-Al compound at interface and bonding parameters (such as preheat temperature of steel plate, solid fraction of Al-7graphite slurry and rolling speed) was established by artificial neural networks perfectly. The results show that when the bonding parameters are 516 ℃ for preheat temperature of steel plate, 32.5% for solid fraction of Al-7graphite slurry and 12 mm/s for rolling speed, the reasonable ratio of Fe-Al compound corresponding to the largest interfacial shear strength of bonding plate is obtained to be 70.1%. This reasonable ratio of Fe-Al compound is a quantitative criterion of interracial embrittlement, namely, when the ratio of Fe-Al compound at interface is larger than 70.1%, interfacial embrittlement will occur.展开更多
The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The...The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The results show that there is a nonlinear relationship between the ratio of Fe-Al compound at the interface and the interfacial shear strength. When the ratio of Fe-Al compound at the interface is smaller than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength increases gradually; when the ratio of Fe-Al compound at the interface is larger than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength decreases continuously; when the ratio of Fe-Al compound at the interface is 71.4%, the largest interfacial shear strength 70.2MPa is obtained.展开更多
基金Project(50675234)supported by the National Natural Science Foundation of China
文摘Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, thermodynamic characteristic of Sn-9Zn solder alloy were analyzed. The tensile-shear tests were used to evaluate the mechanical properties of solder/Cu joints. The results show that the rapid solidification process can greatly refine the microstructure of Sn-9Zn-0.1Pr(/Nd) alloys. After rapid solidification, the effects of Pr/Nd addition on microstructure are depressed. The pasty range of the rapidly solidified Sn-Zn-RE solders is also reduced significantly. The mechanical properties of solder/Cu joints are obviously improved using the rapidly solidified Sn-9Zn-0.1Pr(/Nd) solder alloy, which results in the formation of uniform interface. The promotion effect of Nd addition in Sn-9Zn alloy on the interfacial reaction of solder/Cu joint is more remarkable than that of Pr.
基金Project(50054) supported by the Program for New Century Excellent Talents in Universityproject(20060004020) supported by the Research Fund for the Doctoral Program of Higher Education+1 种基金project(3062017) supported by the Natural Science Foundation of Beijing, Chinaproject(2004SZ007) supported by the Foundation of Beijing Jiaotong University
文摘The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The relationship between the ratio of Fe-Al compound at interface and bonding parameters (such as preheat temperature of steel plate, solid fraction of Al-7graphite slurry and rolling speed) was established by artificial neural networks perfectly. The results show that when the bonding parameters are 516 ℃ for preheat temperature of steel plate, 32.5% for solid fraction of Al-7graphite slurry and 12 mm/s for rolling speed, the reasonable ratio of Fe-Al compound corresponding to the largest interfacial shear strength of bonding plate is obtained to be 70.1%. This reasonable ratio of Fe-Al compound is a quantitative criterion of interracial embrittlement, namely, when the ratio of Fe-Al compound at interface is larger than 70.1%, interfacial embrittlement will occur.
文摘The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The results show that there is a nonlinear relationship between the ratio of Fe-Al compound at the interface and the interfacial shear strength. When the ratio of Fe-Al compound at the interface is smaller than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength increases gradually; when the ratio of Fe-Al compound at the interface is larger than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength decreases continuously; when the ratio of Fe-Al compound at the interface is 71.4%, the largest interfacial shear strength 70.2MPa is obtained.