With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling an...With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.展开更多
The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is requ...The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time.展开更多
The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector...The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.展开更多
Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the v...Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.展开更多
Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely...Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely on the status of performance error. Thus it eliminates the influences of gain coefficients in SMRAC and the amplitude of input signal on the dynamic characteristics. Experiments on various step amplitudes and loads show that the performances of SMRAC are improved by incorporating fuzzy modification method.展开更多
Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the ti...Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the time? varying deadzone and gain. Methods The large positioning errors caused by the time varying deadzone were significantly reduced by using the dynamic compensation method for the deadzone; and the large overshoot caused by the time varying gain were dramatically reduced by using the three section intelligent control schemes. Results Experimental results demonstrated that the positioning performance of rapid response, high accuracy and smaller or even no overshoot was achieved under a wide variations of load torque. Conclusion The good positioning performance for valve controlled motor servo systems has been achieved in the presence of the time varying deadzone and gain.展开更多
Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to ...Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.展开更多
基金supported by the Chinese Civil Aircraft Project(No.MJ-2017-S49).
文摘With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.
文摘The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time.
文摘The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.
文摘Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.
文摘Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely on the status of performance error. Thus it eliminates the influences of gain coefficients in SMRAC and the amplitude of input signal on the dynamic characteristics. Experiments on various step amplitudes and loads show that the performances of SMRAC are improved by incorporating fuzzy modification method.
文摘Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the time? varying deadzone and gain. Methods The large positioning errors caused by the time varying deadzone were significantly reduced by using the dynamic compensation method for the deadzone; and the large overshoot caused by the time varying gain were dramatically reduced by using the three section intelligent control schemes. Results Experimental results demonstrated that the positioning performance of rapid response, high accuracy and smaller or even no overshoot was achieved under a wide variations of load torque. Conclusion The good positioning performance for valve controlled motor servo systems has been achieved in the presence of the time varying deadzone and gain.
基金The Project Supported by Doctoral Programme Foundation of Institution of Higher Education
文摘Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.