期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
硅橡胶/SiC复合材料非线性电阻及电荷输运特性 被引量:8
1
作者 杨卓然 李忠磊 +1 位作者 李进 杜伯学 《中国电机工程学报》 EI CSCD 北大核心 2016年第24期6647-6653,共7页
为探索非线性电阻率对SiR/SiC复合材料空间电荷及表面电荷特性的影响,对不同SiC颗粒含量的SiR/SiC复合材料在不同电压下的电阻率以及空间电荷与表面电位进行了测量,分析SiR/SiC复合材料在不同电压下电阻率的变化规律以及电阻率对SiR/Si... 为探索非线性电阻率对SiR/SiC复合材料空间电荷及表面电荷特性的影响,对不同SiC颗粒含量的SiR/SiC复合材料在不同电压下的电阻率以及空间电荷与表面电位进行了测量,分析SiR/SiC复合材料在不同电压下电阻率的变化规律以及电阻率对SiR/SiC复合材料电荷积累与消散特性的影响。研究结果表明:当SiC颗粒含量(质量分数)低于10%时,SiR/SiC复合材料的电阻率没有明显的非线性;当SiC颗粒含量高于30%时,SiR/SiC复合材料的电阻率随着电场强度的升高,呈现非线性的变化,并且电场阈值随SiC颗粒含量的增加而降低。在空间电荷极化过程中,较低的电阻率抑制了SiR/SiC复合材料空间电荷的积累;同时在空间电荷去极化过程中,较低的电阻率明显加速了SiR/SiC复合材料空间电荷的消散。此外,较低的电阻率同样对表面电荷消散表现出明显的加速作用。该文初步探究了SiR/SiC复合材料非线性电阻率和电荷特性的变化规律,为直流电缆附件非线性电阻率材料的应用提供了参考。 展开更多
关键词 直流电缆附件 硅橡胶 碳化硅颗粒 非线性电阻率 空间电荷 表面电位衰减
在线阅读 下载PDF
钛酸铜钙/硅橡胶复合介质电性能及仿真分析 被引量:2
2
作者 魏力强 张鹏 +2 位作者 李艳辉 高承华 李振 《绝缘材料》 CAS 北大核心 2021年第7期25-30,共6页
为了获得兼具良好电阻率非线性特性和较高击穿特性的硅橡胶复合介质,制备了钛酸铜钙(CCTO)陶瓷粉体,按体积分数分别为3%、5%、10%掺入双组分液体硅橡胶中,分别获得纯硅橡胶和不同CCTO掺入量的CCTO/硅橡胶复合介质。对该复合介质进行微... 为了获得兼具良好电阻率非线性特性和较高击穿特性的硅橡胶复合介质,制备了钛酸铜钙(CCTO)陶瓷粉体,按体积分数分别为3%、5%、10%掺入双组分液体硅橡胶中,分别获得纯硅橡胶和不同CCTO掺入量的CCTO/硅橡胶复合介质。对该复合介质进行微观结构表征、介电谱特性测试、直流击穿性能测试、直流非线性电阻率测试,最后通过建立高压直流电缆终端仿真模型,对复合介质的应用性能进行对比。结果表明:CCTO陶瓷粉体特征衍射峰明显,粉体粒径约为500 nm;随着CCTO陶瓷粉体掺入量的增加,CCTO/硅橡胶复合介质的介电常数随之增加,直流击穿强度下降,电阻率非线性特性明显增强;随着电阻率非线性特性的增强,电缆终端应力锥增强绝缘中的电场强度下降明显,当复合介质中CCTO陶瓷粉体体积分数为5%和10%时,复合介质可作为高压直流电缆附件应力锥的增强绝缘材料。 展开更多
关键词 电阻率非线性 钛酸铜钙 硅橡胶 仿真分析
在线阅读 下载PDF
Nonlinear inversion for electrical resistivity tomography based on chaotic DE-BP algorithm 被引量:5
3
作者 戴前伟 江沸菠 董莉 《Journal of Central South University》 SCIE EI CAS 2014年第5期2018-2025,共8页
Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was pres... Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion. 展开更多
关键词 electrical resistivity tomography nonlinear inversion differential evolution back propagation network Tent map
在线阅读 下载PDF
An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging 被引量:3
4
作者 江沸菠 戴前伟 董莉 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2129-2138,共10页
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite... To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion. 展开更多
关键词 electrical resistivity imaging nonlinear inversion information criterion(IC) radial basis function neural network(RBFNN) particle swarm optimization(PSO)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部