The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio o...The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.展开更多
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated...Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.展开更多
基金Projects(51675043,52005038)supported by the National Natural Science Foundation of China。
文摘The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.
基金Project(20080431380) supported by China Postdoctoral Science Foundation
文摘Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.